
Simulink® Real-Time™

User's Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ User's Guide
© COPYRIGHT 1999–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 1999 First printing New for Version 1 (Release 11.1)
November 2000 Online only Revised for Version 1.1 (Release 12)
June 2001 Online only Revised for Version 1.2 (Release 12.1)
September 2001 Online only Revised for Version 1.3 (Release 12.1+)
July 2002 Online only Revised for Version 2 (Release 13)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)
March 2009 Online only Revised for Version 4.1 (Release 2009a)
September 2009 Online only Revised for Version 4.2 (Release 2009b)
March 2010 Online only Revised for Version 4.3 (Release 2010a)
September 2010 Online only Revised for Version 4.4 (Release 2010b)
April 2011 Online only Revised for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)
October 2014 Online only Revised for Version 6.1 (Release 2014b)
March 2015 Online only Revised for Version 6.2 (Release 2015a)
September 2015 Online only Revised for Version 6.3 (Release 2015b)
March 2016 Online only Revised for Version 6.4 (Release 2016a)
September 2016 Online only Revised for Version 6.5 (Release 2016b)
March 2017 Online only Revised for Version 6.6 (Release 2017a)
September 2017 Online only Revised for Version 6.7 (Release 2017b)

Model Architectures

FPGA Models
1

Speedgoat FPGA Support with HDL Workflow
Advisor . 1-2

FPGA Programming and Configuration 1-5

Interrupt Configuration . 1-17
FPGA Domain Model . 1-17
Simulink Real-Time Domain Model 1-18

FPGA Subsystem Plan . 1-20
Target Device . 1-20
FPGA Synchronization Mode . 1-20
FPGA Inports and Outports . 1-21
FPGA Clock Frequency . 1-22
FPGA Deployment . 1-22

FPGA Synchronization Modes . 1-25

Third-Party Calibration Support
2

Calibrate Real-Time Application . 2-2

v

Contents

Prepare ASAP2 Data Description File 2-4
Initial Setup . 2-6
Set Up Parameters . 2-6
Set Up Signals . 2-7
Set Up Lookup Tables . 2-8
Generate Data Description File 2-8

Calibrate Parameters with Vector CANape 2-10
Prepare Project . 2-10
Prepare Device . 2-10
Configure Signals and Parameters 2-11
Perform Signal Measurement and Parameter

Calibration . 2-11

Vector CANape Limitations . 2-13

Vector CANape Troubleshooting 2-14
Simulation Data Inspector in Use 2-14
Master Cannot Connect . 2-14
ASAP2 File Out of Date . 2-14

Calibrate Parameters with ETAS Inca 2-15
Prepare Database . 2-15
Prepare Project . 2-15
Prepare Workspace . 2-16
Prepare Experiment . 2-16
Configure Signals and Parameters 2-16
Perform Signal Measurement and Parameter

Calibration . 2-16

ETAS Inca Limitations . 2-18

ETAS Inca Troubleshooting . 2-19
Simulation Data Inspector in Use 2-19
Master Cannot Connect . 2-19
ASAP2 File Out of Date . 2-19
Cannot Disable Freeze Mode . 2-19

vi Contents

Real-Time Application Setup

Real-Time Application Environment
3

Default Target Computers . 3-2

Command-Line C Compiler Configuration 3-3

Command-Line Setup . 3-5

Command-Line PCI Bus Ethernet Setup 3-6
PCI Bus Ethernet Protocol Hardware 3-6
Command-Line PCI Bus Ethernet Settings 3-7

Command-Line USB-to-Ethernet Setup 3-10
USB-to-Ethernet Protocol Hardware 3-10
Command-Line USB-to-Ethernet Settings 3-12

Ethernet Card Selection by Index 3-15

Command-Line Ethernet Card Selection by Index 3-17

Command-Line Target Computer Settings 3-20

Command-Line Target Computer Boot Methods 3-22

Command-Line Kernel Creation Prechecks 3-23

Command-Line Network Boot Method 3-24

Command-Line CD/DVD Boot Method 3-26

Command-Line DOS Loader Boot Method 3-27

Command-Line Removable Disk Boot Method 3-29

Command-Line Standalone Boot Method 3-31
Target Computer Requirements 3-31

vii

DOS Environment Restrictions 3-32
Command-Line Standalone Settings 3-32
Real-Time Application Build . 3-33
Real-Time Application Transfer and Boot

Configuration . 3-34

Signals and Parameters
4

Signal Monitoring Basics . 4-4

Monitor Signals with Simulink Real-Time Explorer 4-6

Monitor Signals with MATLAB Language 4-9

Instrument a Stateflow Subsystem 4-11
Configure Stateflow States as Test Points 4-11
Monitor Stateflow States with Simulink Real-Time

Explorer . 4-13

Signal Group Monitoring Formats 4-16

Monitor Stateflow States with MATLAB Language . . . 4-17

Animate Stateflow Charts with Simulink External
Mode . 4-18

Signal Tracing Basics . 4-20

Simulink Real-Time Scope Usage 4-21

Target Scope Usage . 4-23

Configure Real-Time Target Scope Blocks 4-25

Create Target Scopes with Simulink Real-Time
Explorer . 4-31

Configure Scope Sampling with Simulink Real-Time
Explorer . 4-37

viii Contents

Trigger Scopes with Simulink Real-Time Explorer . . . 4-41
Freerun Triggering . 4-41
Software Triggering . 4-41
Signal Triggering . 4-43
Scope Triggering . 4-47

Configure Target Scopes with Simulink Real-Time
Explorer . 4-51

Configure Target Scopes with MATLAB Language 4-55

Create Signal Groups with Simulink Real-Time
Explorer . 4-58

Host Scope Usage . 4-61

Configure Real-Time Host Scope Blocks 4-62

Create Host Scopes with Simulink Real-Time
Explorer . 4-66

Set Up Model . 4-66
Configure Host Scope . 4-66
View Host Scope . 4-68

Configure the Host Scope Viewer 4-71

Trace Signals with Simulink External Mode 4-73

Inspect Simulink® Real-Time™ Data with Simulation
Data Inspector . 4-76

Minimize Data Loss with Simulation Data Inspector
Buffered Mode . 4-82

Set Up Model . 4-82
Set Up Simulation Data Inspector 4-83
View Simulation Data . 4-83

External Mode Usage . 4-87

Signal Logging Basics . 4-88

File Scope Usage . 4-90

ix

Configure Real-Time File Scope Blocks 4-93

Create File Scopes with Simulink Real-Time
Explorer . 4-98

Configure File Scopes with Simulink Real-Time
Explorer . 4-102

Log Signal Data into Multiple Files 4-106

Log Signal Data with Outport Blocks and Simulink Real-
Time Explorer . 4-110

Data Logs . 4-111
Configure the Model for Data Logging 4-112
Log the Data . 4-112
Download and Plot the Data . 4-112

Log Signal Data with Outport Block and MATLAB
Language . 4-116

Data Logs . 4-117
Configure the Model for Data Logging 4-117
Log the Data . 4-118
Download and Plot the Data . 4-119

Signal Logging Buffer Size . 4-123

Configure File Scopes with MATLAB Language 4-124

Tune Parameters with Simulink Real-Time Explorer 4-128
Set Up Host Scope . 4-128
Initial Values . 4-129
Updated Values . 4-130

Create Parameter Groups with Simulink Real-Time
Explorer . 4-133

Tune Parameters with MATLAB Language 4-136

Tune Parameters with Simulink External Mode 4-139

x Contents

Save and Reload Parameters with MATLAB
Language . 4-141

Save the Current Set of Real-Time Application
Parameters . 4-141

Load Saved Parameters to a Real-Time Application . . 4-142
List Parameter Values Stored in a File 4-142

Tunable Block Parameters and Tunable Global
Parameters . 4-144

Tunable Parameters . 4-144
Inlined Parameters . 4-145
Tuning in External Mode . 4-145
Tuning with Simulink Real-Time Explorer 4-145
Tuning with MATLAB Language 4-146

Tune Inlined Parameters with Simulink Real-Time
Explorer . 4-147

Configure Model to Tune Inlined Parameters 4-147
Initial Value . 4-150
Updated Value . 4-151

Tune Inlined Parameters with MATLAB Language . . 4-154

Tune Parameter Structures with Simulink Real-Time
Explorer . 4-156

Create Parameter Structure . 4-156
Replace Block Parameters with Parameter Structure

Fields . 4-157
Tune Parameters in a Parameter Structure 4-158
Save and Load Parameter Structure 4-160

Tune Parameter Structures with MATLAB Language 4-162
Create Parameter Structure . 4-162
Replace Block Parameters with Parameter Structure

Fields . 4-163
Tune Parameters in a Parameter Structure 4-163
Save and Load Parameter Structure 4-165

Define and Update Inport Data 4-166
File Dependencies . 4-166
Map Inport to Use Square Wave 4-166
Update Inport to Use Sawtooth Wave 4-169

xi

Define and Update Inport Data with MATLAB
Language . 4-172

File Dependencies . 4-172
Map Inport to Use Square Wave 4-172
Update Inport to Use Sawtooth Wave 4-174

Inport Data Mapping Limitations 4-177

Display and Filter Hierarchical Signals and
Parameters . 4-178

Hierarchical Display . 4-178
Filtered Display . 4-179
Grouped Display . 4-181

Signals Not Accessible by Name 4-183

Parameters Not Accessible by Name 4-185

Internationalization Issues . 4-186

Execution Modes
5

Execution Modes . 5-2
Interrupt Mode . 5-3
Polling Mode . 5-3

xii Contents

Real-Time Application Execution

Execution with User Interface Models
6

Simulink Real-Time Interface Blocks to Simulink
Models . 6-2

Simulink User Interface Model . 6-2
Creating a Custom Graphical Interface 6-3
To Target Block . 6-4
From Target Block . 6-6
Creating a Real-Time Application Model 6-8
Marking Block Parameters . 6-8
Marking Block Signals . 6-10

Execution Using the Target Computer Command
Line

7
Control Real-Time Application at Target Computer

Command Line . 7-2
Trace Signals at Target Computer Command Line 7-2
Tune Parameters at Target Computer Command Line . . 7-4
Alias Commands at Target Computer Command Line . . 7-5
Find Signal and Parameter Indexes 7-5

Tuning Performance
8

Improve Performance of Multirate Model 8-2

Multicore Processor Configuration 8-11

xiii

Limits on Sample Time . 8-13

CPU Overload Options . 8-14
Option Behavior . 8-14
Violation of xPCMaxOverloads 8-16
Violation of xPCMaxOverloadLen 8-17
Violation of xPCStartupFlag . 8-17

Execution Profiling for Real-Time Applications 8-19

Building Referenced Models in Parallel 8-26

Sample Time and Throughput in Real-Time
Applications . 8-28

Real-Time Performance Factors 8-28
Resources . 8-28
Improving Performance with Concurrency 8-30
Additional Optimizations . 8-49

Execution with MATLAB Scripts

Real-Time Applications and Scopes in the
MATLAB Interface

9
Real-Time Application Objects . 9-2

Create Real-Time Application Objects 9-3
Display Application Object Properties 9-3
Set Real-Time Application Object Property Values 9-4
Get Real-Time Application Object Property Values 9-5
Use Real-Time Application Object Functions 9-5

Real-Time Scope Objects . 9-7
Display Scope Object Properties for One Scope 9-8
Display Scope Object Properties for Multiple Scopes 9-9
Set Scope Property Values . 9-9
Get Scope Property Values . 9-10

xiv Contents

Use Scope Object Functions . 9-11

Acquire Signal Data with File Scopes 9-12

Acquire Signal Data into Dynamically Named Files . . . 9-14

Scope Trigger Configuration . 9-17

Pretriggering and Posttriggering of Scopes 9-18

Trigger One Scope with Another Scope 9-20
Scope-Triggered Data Acquisition 9-20
Trigger Sample Setting . 9-23

Minimize Data Gaps with Two Scopes 9-27

Logging Signal Data with File System Objects
10

File System Basics . 10-2

Using SimulinkRealTime.fileSystem Objects 10-4
Copying Files from the Target Computer to the

Development Computer . 10-6
Copying Files from the Development Computer to the

Target Computer . 10-6
Accessing File Systems on a Specific Target

Computer . 10-7
Reading the Contents of a File on the Target

Computer . 10-8
Removing a File from the Target Computer 10-10
Getting a List of Open Files on the Target Computer . 10-10
Getting Information About a File on the Target

Computer . 10-11
Getting Information About a Disk on the Target

Computer . 10-12

xv

Deploy the MATLAB Application as a Standalone
Executable

11
MATLAB Runtime Setup . 11-2

Deploy MATLAB Application to Control Real-Time
Application . 11-4

Prerequisites . 11-4
Package the MATLAB Application 11-4
Run the MATLAB Application 11-6

Automated Test with Simulink Test
12

Test Real-Time Application . 12-2

Troubleshooting

Troubleshooting Basics
13

Troubleshooting Process . 13-2

Confidence Test Failures
14

Test 1: Ping Target Computer with System Ping 14-2

Test 2: Ping Target Computer with slrtpingtarget 14-4

xvi Contents

Test 3: Software Restart Target Computer 14-5

Test 4: Build and Download slrttestmdl 14-7

Test 5: Check Communication with Target
Computer . 14-9

Test 6: Download Prebuilt Real-Time Application . . . 14-10

Test 7: Execute Real-Time Application 14-11

Test 8: Upload Logged Data and Compare Results . . . 14-12

Development Computer Configuration
15

Boot Drive Creation Halts . 15-2

Target Computer Configuration
16

Faulty BIOS Settings on Target Computer 16-2

Hard Drive Not Recognized . 16-3

File System Disabled on Target Computer 16-4

Adjust the Target Computer Stack Size 16-5

PCI Board Information . 16-6

Diagnose an I/O Board . 16-8

xvii

Link Between Development and Target
Computers

17
Failed Communication Between Development and

Target Computers . 17-2

Communications Timeout . 17-3
Diagnose Communication Settings 17-3
Increase Communication Timeout 17-3

Timeout with Multiple Ethernet Cards 17-5
Network Boot . 17-5
Non-Network Boot . 17-6

Target Computer Boot Process
18

Target Computer Does Not Boot 18-2

Target Medium Is Not Bootable . 18-4

Target Computer Halts . 18-5

Target Computer Spontaneously Restarts 18-6

Model Compilation
19

Microsoft Visual Studio 2015 C/C++ Compiler Not
Installed . 19-2

Compiler Errors from Models Linked to DLLs 19-3

xviii Contents

Real-Time Application Download
20

Polling Mode Not Supported on Single-Core Target
Computers . 20-2

Real-Time Application Execution
21

Error from Crash Info Function 21-2

Sample Time Deviates from Expected Value 21-4

Cannot Change Sample Time at Run Time 21-6

Change of Stop Time . 21-7

Real-Time Application Signals
22

Fix Invalid File IDs . 22-2

Cannot View Mux Output . 22-3

Real-Time Application Performance
23

Improve Run-Time Performance 23-2
Run Performance Tools . 23-2
Use Multicore Target Computer 23-2
Minimize Model . 23-3
Contact Technical Support . 23-3

xix

Real-Time Application Execution Produces CPU
Overloads . 23-5

Real CPU Overloads . 23-5
Spurious CPU Overloads . 23-6

Allow CPU Overloads . 23-7
Long Initializations . 23-7
Overload Diagnosis . 23-7

Task Execution Time Definition 23-8

Failure to Read Profiling Data . 23-9

Timeout While Accessing File System 23-10

Simulink Real-Time Support
24

Find Simulink Real-Time Support 24-2

Install Simulink Real-Time Software Updates 24-3

xx Contents

Model Architectures

21

FPGA Models

• “Speedgoat FPGA Support with HDL Workflow Advisor” on page 1-2
• “FPGA Programming and Configuration” on page 1-5
• “Interrupt Configuration” on page 1-17
• “FPGA Subsystem Plan” on page 1-20
• “FPGA Synchronization Modes” on page 1-25

1

Speedgoat FPGA Support with HDL Workflow Advisor
Simulink Real-Time and HDL Coder™ enable you to implement Simulink algorithms
and configure I/O functionality on Speedgoat field programmable gate array (FPGA)
boards.

For an example that shows the development workflow for FPGA I/O boards, see “FPGA
Programming and Configuration” on page 1-5. You do not use these blocks outside of
HDL Coder HDL Workflow Advisor.

To use these blocks, open HDL Coder HDL Workflow Advisor and use it to generate a
Simulink Real-Time interface subsystem. See “FPGA Programming and Configuration”
on page 1-5.

The subsystem mask controls the block parameters. Do not edit the parameters directly.
The FPGA I/O board block descriptions are for informational purposes only.

Speedgoat I/O FPGA boards are sold as part of Speedgoat target computer systems. See:

www.mathworks.com/products/simulink-real-time/supported/hardware-
drivers.html.

Simulink Real-Time supports the following Speedgoat (www.speedgoat.com) FPGA I/O
boards.
Speedgoat IO321 The Speedgoat IO321 is a field-

programmable gate array (FPGA) board
that provides 64 bidirectional LVCMOS or
32 bidirectional LVDS (four are input only)
I/O lines. It also provides two 16-bit 105-
MHz analog input channels. This board is
based on a Xilinx® Virtex-4 chip with
41,472 logic cells.

The Speedgoat IO321 is the base board.
The Speedgoat IO321-5 is the Speedgoat
IO321 plus the AXM-A30 high-speed A/D
port subassembly.

1 FPGA Models

1-2

https://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html
https://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html
https://www.speedgoat.com

Speedgoat IO331 The Speedgoat IO331 is a field-
programmable gate array (FPGA) board
that provides 64 bidirectional LVCMOS or
32 bidirectional LVDS I/O lines. This board
is based on a Xilinx Spartan® 6 chip with
147,333 logic cells.

The Speedgoat IO331 is the base board.
The Speedgoat IO331-6 is the AXM-A75
A/D converter, an add-on to the Speedgoat
IO331.

Speedgoat IO333 The Speedgoat IO333 is a field-
programmable gate array (FPGA) board
based on a Xilinx Kintex® 7 chip with 325k
logic cells.

HDL Coder HDL Workflow Advisor
supports the Speedgoat IO333-325K-06
configuration. For more information, see
Speedgoat HDL Coder Integration Package
for the IO333-325K.

To work with FPGAs in the Simulink Real-Time environment, you must:

• Install HDL Coder and Xilinx design tools. For the specific tool and version required,
see the board reference topic and the HDL Coder documentation.

• Install the Speedgoat FPGA I/O board in the Speedgoat target machine.
• Be familiar with FPGA technology. In particular, you must know the clock frequency

and the I/O connector pin and channel configuration of your FPGA board.
• Have experience using data type conversion and designing Simulink fixed-point

algorithms.

To generate HDL code for your FPGA target, you do not need to have HDL programming
experience.

See Also
Speedgoat IO333 | Speedgoat IO321 | Speedgoat IO331

 See Also

1-3

More About
• “Supported Third-Party Tools and Hardware” (HDL Coder)
• “Tool Setup” (HDL Coder)
• “FPGA Programming and Configuration” on page 1-5
• “Digital I/O with Speedgoat FPGA Board”
• “PLL-Based Interrupt Generation from FPGA Input”

External Websites
• www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html
• www.speedgoat.com/help
• www.speedgoat.com

1 FPGA Models

1-4

https://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html
https://www.speedgoat.com/help
https://www.speedgoat.com

FPGA Programming and Configuration
This example shows how to implement a Simulink® algorithm on a Speedgoat FPGA I/O
board by using HDL Workflow Advisor to:

1 Specify an FPGA board and its I/O interface.
2 Synthesize the Simulink algorithm for FPGA programming.
3 Generate a Simulink® Real-Time™ interface subsystem model.

The interface subsystem model contains blocks to program the FPGA and communicate
with the FPGA I/O board during real-time application execution. You add the generated
subsystem to your Simulink Real-Time domain model.

The entire workflow looks like this figure.

 FPGA Programming and Configuration

1-5

This example uses the Speedgoat IO331. You can use any FPGA I/O module supported by
Simulink Real-Time and HDL Coder that meets the speed, size, and pinout requirements
of the model.

Requirements and Preconditions

HDL Coder™

Before you start, complete an FPGA subsystem plan.

For the IO331 board, HDL Workflow Advisor requires the Xilinx® ISE toolset. To install
this toolset, in the Command Window, type:

hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', toolpath)

where toolpath is the full path to the synthesis tool executable.

For the toolset requirements of other boards, see Supported Third-Party Tools and
Hardware (HDL Coder).

Step 1. Simulink Domain Model

The Simulink FPGA domain model contains a subsystem (algorithm) to be programmed
onto the FPGA chip. Using this model, you can test your FPGA algorithm in a simulation
environment before you download the algorithm to an FPGA board.

1 Create a Simulink model that contains the algorithm that you want to load onto the
FPGA, in this case a loopback test.

2 Place the algorithm to be programmed on the FPGA inside a Subsystem block. The
model can include other blocks and subsystems for testing. However, one subsystem
must contain the FPGA algorithm.

3 Set or confirm the subsystem inport and outport names and data types. The HDL
Coder HDL Workflow Advisor uses these settings for routing and mapping algorithm
signals to I/O connector channels.

4 Save the model.

This model is your FPGA domain model. It represents the simulation sample rate of the
clock on your FPGA board. For example, the Speedgoat IO331 has an onboard 125 MHz
clock. One second of simulation equals 125e6 iterations of the model.

For an example of an FPGA domain model, see dslrtSGFPGAloopback_fpga. The
ServoSystem subsystem contains the FPGA algorithm.

1 FPGA Models

1-6

Step 2. FPGA Target Configuration

This procedure uses the dslrtSGFPGAloopback_fpga example. You must have already
created an FPGA subsystem (algorithm) in an FPGA domain model and developed an
FPGA subsystem plan.

1 Open the FPGA domain model dslrtSGFPGAloopback_fpga.
2 In the FPGA model, right-click the FPGA subsystem (ServoSystem). From the

context menu, select HDL Code > HDL Workflow Advisor. The HDL Workflow
Advisor dialog box displays several tasks for the subsystem. Address only your
required subset of the tasks.

3 Expand the Set Target folder and select task 1.1 Set Target Device and
Synthesis Tool.

4 Set Target Workflow to Simulink Real-Time FPGA I/O.
5 From the Target platform list, select the Speedgoat FPGA I/O board installed in

your Speedgoat target machine, in this case the Speedgoat IO331. Check that
HDL Workflow advisor sets the synthesis tool to the Xilinx® ISE Design Suite.

6 Click Run This Task.

 FPGA Programming and Configuration

1-7

Step 3. FPGA Target Interface Configuration

You must have already configured the FPGA target.

1 In the Set Target folder, select task 1.2 Set Target Interface.
2 In the Processor/FPGA synchronization box, select Free running.
3 For signals hwIn and hwOut, in the Target Platform Interfaces column, select

LVCMOS I/O Channel [0:63]. In the Bit Range/Address/FPGA Pin column,
enter the channel value for each signal, or take the defaults.

4 For signals pciRead and pciWrite, in the Target Platform Interfaces column,
select PCI Interface. In the Bit Range/Address/FPGA Pin column, use the
automatically generated values. Do not enter PCI address values.

1 FPGA Models

1-8

5 Click Run This Task.

Step 4. FPGA Target Frequency Configuration

You must have already configured the FPGA target interface.

1 In the Set Target folder, select task 1.3 Set Target Frequency (optional). The Set
Target Frequency pane contains fields showing the FPGA input clock frequency
(fixed) and the FPGA system clock frequency. The FPGA system clock frequency
defaults to the FPGA input clock frequency.

2 To specify a different system clock frequency (for example, 50 MHz), type the new
value in the field FPGA system clock frequency (MHz). For the permitted range

 FPGA Programming and Configuration

1-9

for the system clock rate, see the Speedgoat board characteristics table. The system
sometimes sets a value different from the one you specified.

3 Click Run This Task.

Step 5. Simulink Real-Time Interface Subsystem Generation

This procedure generates an interface subsystem file for the dxpcSGFPGAloopback_fpga
example.

Assign distinct names to blocks that contain different HDL code. The name of the
interface subsystem file is derived directly from the block name. If two blocks containing
different HDL code have the same name, the names collide and one of the blocks gets the
wrong code.

1 FPGA Models

1-10

You must have already configured the FPGA target interface and the required target
frequency. If you have specified vector inports or outports, you must have already
selected the Scalarize vector ports check box. This check box is on the Coding style
tab of node Global Settings, under node HDL Code Generation in the Configuration
Parameters dialog box.

1 Expand the Download to Target folder, and right-click task 5.2 Generate
Simulink Real-Time Interface.

2 In this pane, click Run To Selected Task.

This action:

• Runs the remaining tasks.
• Creates the FPGA bitstream file in the hdlsrc folder. The Simulink Real-Time

interface subsystem references this bitstream file during the build and download
process.

• Generates a model named gm_dslrtSGFPGAloopback_fpga_slrt, which contains
the Simulink Real-Time interface subsystem.

Here is an example of the HDL Coder HDL Workflow Advisor after this action.

 FPGA Programming and Configuration

1-11

The generated interface subsystem looks like this figure.

1 FPGA Models

1-12

This generated model contains a masked subsystem with the same name as the
subsystem in the Simulink FPGA domain model. Although the appearance is similar,
this subsystem does not contain the Simulink algorithm. Instead, the algorithm is
implemented in an FPGA bitstream. You reference and load this algorithm into the
FPGA from this subsystem.

Step 6. Simulink Real-Time Domain Model

Using the Simulink Real-Time software, transform a Simulink or Stateflow® domain
model into a Simulink Real-Time domain model and execute it on a Speedgoat target
machine for real-time testing applications. After creating a Speedgoat FPGA interface
subsystem. You can then include the FPGA board in your Simulink Real-Time domain
model by inserting the interface subsystem.

1 Create a Simulink Real-Time domain model with the functionality that you want to
simulate with the FPGA algorithm. Leave the inports and outports of the FPGA
subsystem disconnected.

2 Save the model.

The Simulink Real-Time domain model looks like this figure. See example model
dslrtSGFPGAloopback_slrt.

 FPGA Programming and Configuration

1-13

Step 7. Simulink Real-Time Interface Subsystem Integration

In the Simulink Real-Time interface subsystem mask, set three parameters:

• Device index
• PCI slot
• Sample time

To integrate the interface subsystem:

1 In the Simulink editor, open gm_dslrtSGFPGAloopback_fpga_slrt.
2 Copy the Simulink Real-Time interface subsystem and paste it into the Simulink

Real-Time domain model.
3 Save or discard gm_dslrtSGFPGAloopback_fpga_slrt. You can recreate it as

required using the HDL Coder HDL Workflow Advisor.

1 FPGA Models

1-14

4 In the domain model, connect signals to the inports and outports of the interface
subsystem.

5 Set the block parameters according to the FPGA I/O boards in your Speedgoat target
machine.

• If you have a single FPGA I/O board, leave the device index and PCI slot at the
default values. You can set the sample time or leave it at –1 for inheritance.

• If you have multiple FPGA I/O boards, give each board a unique device index.
• If you have two or more boards of the same type (for example, two Speedgoat IO331

boards), specify the PCI slot ([bus, slot]) for each board. Get this information with the
SimulinkRealTime.target.getPCIInfo function.

6 Save the model.

The updated Simulink Real-Time domain model looks like this figure. See example model
dslrtSGFPGAloopback_slrt_wiss.

 FPGA Programming and Configuration

1-15

Step 8. Real-Time Application Execution

To do this procedure, you must have already created a Simulink Real-Time domain
model that includes a Simulink Real-Time interface subsystem generated from the HDL
Coder HDL Workflow Advisor.

1 Configure the Speedgoat target machine and connect it to the development
computer.

2 Build and download the Simulink Real-Time application. The real-time application
loads onto the Speedgoat target machine and the FPGA algorithm bitstream loads
onto the FPGA.

3 If you are using I/O lines (channels), confirm that you have connected the lines to the
external hardware under test.

The start and stop of the Simulink Real-Time model controls the start and stop of the
FPGA algorithm. The FPGA algorithm executes at the clock frequency of the FPGA I/ O
board, while the real-time application executes in accordance with the model sample
time.

See Also
SimulinkRealTime.target.getPCIInfo | Speedgoat IO331 | Subsystem

More About
• “HDL Workflow Advisor” (HDL Coder)
• “IP Core Generation Workflow for Speedgoat Boards” (HDL Coder)
• “FPGA Subsystem Plan” on page 1-20
• “FPGA Synchronization Modes” on page 1-25
• “FPGA Clock Frequency” on page 1-22
• “Digital I/O with Speedgoat FPGA Board”
• “PLL-Based Interrupt Generation from FPGA Input”

1 FPGA Models

1-16

Interrupt Configuration
Simulink Real-Time software schedules the real-time application using either the
internal timer of the Speedgoat target machine (default) or an interrupt from an I/O
board. You can use your Speedgoat FPGA board to generate an interrupt, which allows
you to:

• Schedule execution of the real-time application based on this interrupt (synchronous
execution). For this method, you must generate the interrupt periodically.

• Execute a designated subsystem in your real-time application (asynchronous
execution).

To use FPGA-based interrupts, set up and configure the FPGA domain and Simulink
Real-Time domain models.

In this section...
“FPGA Domain Model” on page 1-17
“ Simulink Real-Time Domain Model” on page 1-18

FPGA Domain Model

In the FPGA domain subsystem, create the interrupt source for the real-time application
in one of the following ways.
Source Description
Internal A clock you create using Simulink blocks to create input signals. This

clock is a binary pulse train of zeros and ones (transition from 0 to 1 and
from 1 to 0). The clock generates an interrupt on a rising edge. The
following is an example of an internally generated interrupt source from
Simulink blocks. Connect the internally generated interrupt source to an
outport labeled INT.

 Interrupt Configuration

1-17

Source Description
External A clock signal that comes from a device outside the Speedgoat target

machine. You use a digital input pin to connect to this signal. The
following is an example of an externally generated interrupt source that
comes from TTL channel 8. Delay this source by one FPGA clock cycle and
connect to an outport labeled INT.

In both cases, wire the interrupt source to an outport in the FPGA subsystem. Assign the
outport as Interrupt from FPGA in the HDL Coder HDL Workflow Advisor task 1.2
Set Target Interface.

You are now ready to set up interrupt support in the Simulink Real-Time domain model.

Simulink Real-Time Domain Model

Configure the model Simulink Real-Time domain model to set up interrupt support:

1 Open the Simulink Real-Time domain model.
2 In the Simulink editor, select Simulation > Model Configuration Parameters.
3 Navigate to node Simulink Real-Time Options, under node Code Generation.
4 From the Real-time interrupt source list, select one of the following:

• Auto (PCI only)
• The IRQ assigned to your FPGA board

5 From the I/O board generating the interrupt parameter, select your FPGA
board, for example, Speedgoat_IO331.

6 Add the Simulink Real-Time interface subsystem to the model.
7 Build and download the real-time application to the Speedgoat target machine.
8 When you start the real-time application, simulation updates occur when the

application receives an interrupt from the FPGA I/O board.

1 FPGA Models

1-18

See Also

More About
• “PLL-Based Interrupt Generation from FPGA Input”

 See Also

1-19

FPGA Subsystem Plan
Before you work with the HDL Coder HDL Workflow Advisor, plan how to prepare the
FPGA subsystem for HDL code generation and FPGA synthesis.

In this section...
“Target Device” on page 1-20
“FPGA Synchronization Mode” on page 1-20
“FPGA Inports and Outports” on page 1-21
“FPGA Clock Frequency” on page 1-22
“FPGA Deployment” on page 1-22

Target Device

First, to decide which FPGA to target for code generation, consult the Speedgoat data
sheet for information:

• Availability and cost
• Bus compatibility
• Size
• Pinouts
• Clock speed

The example procedure uses the Simulink Real-Time FPGA workflow and the Speedgoat
IO331 FPGA IO board as target platform. This choice requires that you use the Xilinx
ISE synthesis tool.

For information about other target devices, see “Supported Third-Party Tools and
Hardware” (HDL Coder).

FPGA Synchronization Mode

To select the processor/FPGA synchronization mode, you must decide which of the FPGA
synchronization modes to use:

• Free running

1 FPGA Models

1-20

• Coprocessing — blocking
• Coprocessing — nonblocking with delay.

For more information, see “FPGA Synchronization Modes” on page 1-25.

FPGA Inports and Outports
Inports and outports can transmit signal data between the Speedgoat target machine
and the FPGA over the PCI bus. Alternatively, they can map to I/O channels for
communicating with external devices. For connector pin and I/O channel assignments of
your supported FPGA I/O board, see the board reference page for your board.

In addition to the Port Name and Port Type (Inport or Outport), to specify the I/O
interface, see:

• Data Type—Encodes such attributes as width and sign. Data types must map
consistently to their corresponding I/O pins. An inport of type Boolean requires 1 bit,
one of type uint32 requires 32 bits, and so on. For example, you cannot connect an
inport of type uint32 to an FPGA I/O interface of type TTL I/O channel [0:7]; it
requires TTL I/O channel [0:31].

• Target Platform Interfaces—Encodes the I/O channels on the FPGA and their
functional type. For a single-ended interface (TTL, LVCMOS), one channel maps to one
connector pin. For a differential interface (RS422, LVDS), one channel maps to two
connector pins. To discover the mapping for a particular pin, see the pin connector
map provided with the board description.

I/O channels can also map to a predefined specification or role (PCI Interface,
Interrupt from FPGA).

For information on using FPGA interrupts, see “Interrupt Configuration” on page 1-
17.

• Bit Range/Address/FPGA Pin—Encodes the pins on the target platform to which
the inports and outports are assigned, along with the channel number used by the
port. For specification PCI Interface, Bit Range/Address/FPGA Pin encodes the
PCI address used by the port.

If vector inports or outports are required, specify a vector port:

• Inport — Add a mux outside the subsystem that connects to a demux inside the
subsystem.

 FPGA Subsystem Plan

1-21

• Outport – Add a mux inside the subsystem that connects to a demux outside the
subsystem.

• Inport and Outport – Configure the port dimension to be greater than 1.

To achieve a simultaneous update of vector port elements, Workflow Advisor
automatically inserts a strobe and specifies a strobe offset. For more information, see “IP
Core User Guide” (HDL Coder).

If you have specified vector inports or outports, before generating code, you must select
the Scalarize vector ports check box. This check box is on the Coding style tab of
node Global Settings, under node HDL Code Generation in the Configuration
Parameters dialog box.

FPGA Clock Frequency

The FPGA system clock frequency defaults to the fixed FPGA input clock frequency. The
fixed FPGA input clock frequency is shown in the FPGA input clock frequency (MHz)
box. You can specify another frequency in this box. If the FPGA clock circuits cannot
generate the specified value exactly, HDL Coder HDL Workflow Advisor generates the
closest match. The closest match, Fsystem, is based on the following formula:
F F ClkFxMultiply ClkFxDividesystem input= * /

Finput is the fixed FPGA input clock frequency. ClkFxMultiply and ClkFxDivide are
integers.

FPGA Deployment

The FPGA deployment procedure depends upon the FPGA model.

Deploy the IO321 and IO331 FPGAs

When HDL Coder HDL Workflow Advisor generates the programmed FPGA subsystem,
it writes an SLX file (gm_mdlname.slx) and a C file
(blkorrefmdlname_topiospeedgoat#.c) into the model folder. The SLX file contains
the FPGA subsystem. The C file contains the bitstream.

For example, assume that model fpga_model.slx contains a Subsystem block named
fpga_subsystem, and that you configure the FPGA target platform for the model as
Speedgoat IO331. Then HDL Coder HDL Workflow Advisor generates the following files:

1 FPGA Models

1-22

gm_fpga_model.slx
fpga_subsystem_topIO331.c

When you build your domain model with the integrated subsystem, the model builder:

1 Reads the C file.
2 Inserts its contents into the real-time application.
3 Packages the real-time application as an MLDATX file.

The model builder assumes that the SLX file and the C file are in the same folder. If you
deploy the model to another location on the disk, copy the SLX file and the C file to the
new location.

Deploy the IO333 FPGA

When HDL Coder HDL Workflow Advisor generates the programmed FPGA subsystem,
it writes an SLX file (gm_mdlname.slx) and an MCS file
(blkorrefmdlname_timestamp.mcs) into the model folder. The SLX file contains the
FPGA subsystem. The MCS file contains the bitstream.

For example, assume that model fpga_model.slx contains a Subsystem block named
fpga_subsystem, and that you configure the FPGA target platform for the model as
Speedgoat IO333. Then HDL Coder HDL Workflow Advisor generates the following files:

gm_fpga_model.slx
fpga_subsystem_201703301740.mcs

When you build your domain model with the integrated subsystem, the model builder:

1 Generates the real-time application.
2 Packages the real-time application and the MCS file as an MLDATX file.

The model builder searches for the MCS file on the MATLAB® path. If you deploy the
model to another location on the disk, add the new location to the path.

 FPGA Subsystem Plan

1-23

See Also

More About
• “Supported Third-Party Tools and Hardware” (HDL Coder)
• “IP Core User Guide” (HDL Coder)
• “FPGA Synchronization Modes” on page 1-25
• “Interrupt Configuration” on page 1-17

1 FPGA Models

1-24

FPGA Synchronization Modes
In Simulink Real-Time, an FPGA operates in three synchronization modes:

• Free running
• Coprocessing — blocking
• Coprocessing — nonblocking with delay

• Free running (default) — The CPU of the Speedgoat target machine and the FPGA
each run nonsynchronized, continuously, and in parallel. Select this mode when you
want the CPU to run continuously without interrupts. For example, select this mode
when the model is processing continuous PWM output.

The CPU:

1 Strobes data out of the FPGA.
2 Reads results from the FPGA outputs.
3 Writes data to the FPGA inputs.
4 Strobes the data into the FPGA.

The shaded areas indicate that the processor and FPGA are running continuously.

• Coprocessing — blocking — The CPU of the Speedgoat target machine and the
FPGA run synchronized and in tandem. Select this mode when the FPGA execution
time is short compared to the target computer sample time. For example, select this
mode when the model requires the FPGA results to continue processing.

The CPU:

 FPGA Synchronization Modes

1-25

1 Writes data to the FPGA inputs.
2 Strobes the data into the FPGA.
3 Waits for the FPGA to finish executing.
4 Reads results from the FPGA outputs.

• Coprocessing — nonblocking with delay — The CPU of the Speedgoat target
machine and the FPGA run synchronized and in tandem. Select this mode when the
FPGA execution time is long compared to the Speedgoat target machine sample time.
For example, select this mode to manage multiple FPGAs effectively in parallel.

The CPU:

1 Waits for the FPGA to finish executing.
2 Reads the data from the previous time step.
3 Writes new data to the FPGA inputs.
4 Strobes the data into the FPGA.

1 FPGA Models

1-26

Third-Party Calibration Support

• “Calibrate Real-Time Application” on page 2-2
• “Prepare ASAP2 Data Description File” on page 2-4
• “Calibrate Parameters with Vector CANape” on page 2-10
• “Vector CANape Limitations” on page 2-13
• “Vector CANape Troubleshooting” on page 2-14
• “Calibrate Parameters with ETAS Inca” on page 2-15
• “ETAS Inca Limitations” on page 2-18
• “ETAS Inca Troubleshooting” on page 2-19

2

Calibrate Real-Time Application
Simulink Real-Time supports interaction with third-party calibration tools such as
Vector CANape (www.vector.com) and ETAS Inca (www.etas.com). Use these tools for:

• Parameter display and tuning
• Calibration data saving, restoring, and swapping by page
• Signal value streaming

These tools run in XCP master mode. Simulink Real-Time emulates an electronic control
unit (ECU) operating in XCP slave mode. To enable a real-time application to work with
the third-party software:

• Configure the third-party software to communicate with the real-time application as
an ECU.

• Provide a standard TCP/IP physical layer between the development and target
computers. Simulink Real-Time supports third-party calibration software only
through TCP/IP.

• Generate a real-time application with signal and parameter attributes that are
consistent with A2L (ASAP2) file generation. See “Export ASAP2 File for Data
Measurement and Calibration” (Simulink Coder).

• Use the build process to generate model_slrt.a2l (ASAP2) files that the software
can load into its database. The generated file contains signal and parameter access
information for the real-time application and XCP-related sections and memory
addresses.

If your model includes referenced models, the build creates a model_slrt.a2l file
for the real-time application and separate refmodel_slrt.a2l files for each
referenced model.

Note You cannot configure third-party software for calibration with only the A2L files
that Simulink Coder™ generates. These files do not contain XCP-related sections and
memory addresses. Simulink Real-Time adds this information during the build process.

2 Third-Party Calibration Support

2-2

http://www.vector.com
http://www.etas.com

See Also

More About
• “Export ASAP2 File for Data Measurement and Calibration” (Simulink Coder)
• “Prepare ASAP2 Data Description File” on page 2-4
• “Calibrate Parameters with Vector CANape” on page 2-10
• “Calibrate Parameters with ETAS Inca” on page 2-15
• “XCP Master Mode”

External Websites
• www.vector.com
• www.etas.com

 See Also

2-3

http://www.vector.com
http://www.etas.com

Prepare ASAP2 Data Description File
This example shows how to configure a Simulink Real-Time model so that the build
generates an ASAP2 (A2L) data description file for the real-time application. The real-
time application models a damped oscillator that feeds into 1-D and 2-D lookup tables,
which invert and rescale the input waveform.

This example uses ex_slrt_cal_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_cal_osc')))), which requires ex_slrt_cal_osc_data.mat (matlab:
load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_cal_osc_data.mat')))).

2 Third-Party Calibration Support

2-4

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc_data.mat')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc_data.mat')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc_data.mat')))

The goal of calibration is reducing the ringing in signals DampedOsc, L_1D, and L_2D.

In this section...
“Initial Setup” on page 2-6
“Set Up Parameters” on page 2-6
“Set Up Signals” on page 2-7

 Prepare ASAP2 Data Description File

2-5

In this section...
“Set Up Lookup Tables” on page 2-8
“Generate Data Description File” on page 2-8

Initial Setup

For best results, load the MATLAB workspace variables before you load the model that
uses them.

1 Load workspace variables for the example model from
ex_slrt_cal_osc_data.mat (matlab: load(docpath(fullfile(docroot,
'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc_data.mat')))).

The MATLAB workspace variables have the following functions:

• Kg — Parameter object for the Gain1 block
• DampedOsc, SignalGenerator, L_1D, L_2D — Signal objects for output signals
• ydata, zdata — 1-D and 2-D lookup tables respectively
• xbreak1, xbreak2, ybreak — Indexes into lookup tables

2 Open ex_slrt_cal_osc (matlab: open_system(docpath(fullfile(docroot,
'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc')))).

Set Up Parameters

Set up global parameter tuning by using Simulink parameter objects.

1 In ex_slrt_cal_osc, on the toolbar, click the Model Explorer button .
2 Select Base Workspace in the Model Hierarchy pane.
3 Check that the Kg parameter object exists and has these properties:

• Value — 400
• Data type — double
• Storage class — ExportedGlobal

4 If the parameter object does not exist, add it. On the toolbar, click the Add
Simulink Parameter button .

2 Third-Party Calibration Support

2-6

matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc_data.mat')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc_data.mat')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_cal_osc')))

5 Open ex_slrt_cal_osc/Gain1.
6 Check that you have set the Gain value to the parameter object Kg.

Set Up Signals

As a best practice, set up signal viewing by using Simulink signal objects.

1 In ex_slrt_cal_osc, on the toolbar, click the Model Explorer button .
2 Select Base Workspace in the Model Hierarchy pane.
3 Check that the DampedOsc signal object exists and has these properties:

• Minimum — −10
• Maximum — 10
• Data type — double
• Storage class — ExportedGlobal.

4 Check that the SignalGenerator signal object exists and has these properties:

• Minimum — −10
• Maximum — 10
• Data type — double
• Storage class — ExportedGlobal.

5 Check that the L_1D signal object exists and has these properties:

• Minimum — −15
• Maximum — 15
• Data type — double
• Storage class — ExportedGlobal.

6 Check that the L_2D signal object exists and has these properties:

• Minimum — −15
• Maximum — 15
• Data type — double
• Storage class — ExportedGlobal.

 Prepare ASAP2 Data Description File

2-7

7 If a signal does not exist, add it. On the toolbar, click the Add Simulink Signal
button .

8 For each signal, open its Properties dialog box.
9 Check that you selected the Signal name must resolve to Simulink signal

object and the Test point check boxes.

Set Up Lookup Tables

The example model contains 1-D and 2-D lookup tables.

1 Open the block parameters for the 1-D Lookup Table block.
2 In the Table and Breakpoints pane, check the following settings:

• Number of table dimensions — 1
• Table data — ydata
• Breakpoints specification — Explicit values
• Breakpoints 1 — xbreak1

3 Open the block parameters for the 2-D Lookup Table block.
4 In the Table and Breakpoints pane, check the following settings:

• Number of table dimensions — 2
• Table data — zdata
• Breakpoints specification — Explicit values
• Breakpoints 1 — xbreak2
• Breakpoints 2 — ybreak

To view the contents of the lookup tables, click Edit table and breakpoints, and then
click Plot > Mesh.

Generate Data Description File

1 Open Simulation > Model Configuration Parameters.
2 In the left pane, click the Simulink Real-Time Options node.

2 Third-Party Calibration Support

2-8

3 In the Miscellaneous options area, select the Generate INCA/CANape
extensions (disables Simulation Data Inspector and Dashboard blocks)
check box.

This option enables real-time applications to generate an ASAP2 (A2L) data
description file. You can then use third-party calibration software.

4 Build the model.

The build produces a file named ex_slrt_cal_osc_slrt.a2l in the working
folder.

5 When the build is complete, on the target computer monitor, look for the following
message.

XCP Server set up, waiting for connection

This message indicates that you have built the real-time application without
producing an error. You can now connect to the target with a third-party calibration
tool.

See Also
“Generate INCA/CANape extensions (disables Simulation Data Inspector and Dashboard
blocks)” | n-D Lookup Table

More About
• “Calibrate Parameters with Vector CANape” on page 2-10
• “Calibrate Parameters with ETAS Inca” on page 2-15

External Websites
• www.vector.com
• www.etas.com

 See Also

2-9

http://www.vector.com
http://www.etas.com

Calibrate Parameters with Vector CANape
This example shows how to view signals and tune parameters by using Vector CANape.
You must have already completed the steps in “Prepare ASAP2 Data Description File” on
page 2-4.

You also must be familiar with the Vector CANape user interface. For information about
the user interface, see the vendor documentation (www.vector.com).

In this section...
“Prepare Project” on page 2-10
“Prepare Device” on page 2-10
“Configure Signals and Parameters” on page 2-11
“Perform Signal Measurement and Parameter Calibration” on page 2-11

Prepare Project

1 Build and download real-time application ex_slrt_cal_osc.
2 Open Vector CANape.
3 Create a Vector CANape project with project name ex_slrt_cal_osc.

Accept the default folder.

Prepare Device

1 From ex_slrt_cal_osc_slrt.a2l in your build folder, create an XCP device
named ex_slrt_cal_osc_slrt.

Do not configure dataset management.
2 Select your local computer Ethernet adapter as the Ethernet channel
3 Accept the remaining defaults.
4 Upload data from the device.

2 Third-Party Calibration Support

2-10

http://www.vector.com

Configure Signals and Parameters

1 Open device ex_slrt_cal_osc_slrt, and then open
ex_slrt_cal_osc_slrt.a2l.

2 Add signals DampedOsc, SignalGenerator, L_1D, and L_2D in separate display
windows.

3 To make the waveform easier to evaluate, set the time and y-axis scaling.

For example, try the following settings for DampedOsc:

• y-axis min home value — –25
• y-axis max home value — 25
• Min home time-axis value — 0 s
• Max home time-axis value — 0.1 s
• Time duration — 0.1 s

4 Open the measurement list.
5 To set the required sample rate for a signal, open the measurement properties for

the signal. Select the required sample rate from the measurement mode list.

The default rate is the base sample rate.
6 Add a graphic control on parameter Kg.

Perform Signal Measurement and Parameter Calibration

1 Start the Vector CANape measurement.
2 In Simulink Real-Time Explorer, start the real-time application.

The signal windows show the four waveforms, corresponding to the displays on the
target computer screen.

3 To shorten the ring time on DampedOsc, L_1D, and L_2D, set parameter Kg to, for
example, 800.

4 As required, toggle between calibration RAM active and inactive.

 Calibrate Parameters with Vector CANape

2-11

See Also

More About
• “Prepare ASAP2 Data Description File” on page 2-4
• “Vector CANape Limitations” on page 2-13
• “Vector CANape Troubleshooting” on page 2-14

External Websites
• www.vector.com

2 Third-Party Calibration Support

2-12

http://www.vector.com

Vector CANape Limitations
For Vector CANape, the Simulink Real-Time software does not support:

• Starting and stopping the real-time application by using Vector CANape commands.

To start and stop the real-time application on the target computer, use the Simulink
Real-Time start and stop commands, for example start(tg), stop(tg).

• Vector CANape flash programming.
• Multiple simultaneous Vector CANape connections to a single target computer.

Event mode data acquisition has the following limitations:

• Every piece of data that the Simulink Real-Time software adds to the event list slows
the real-time application. The amount of data that you can observe depends on the
model sample time and the speed of the target computer. It is possible to overload the
target computer CPU to where data integrity is reduced.

• You can trace only signals and scalar parameters. You cannot trace vector
parameters.

 Vector CANape Limitations

2-13

Vector CANape Troubleshooting

Simulation Data Inspector in Use

Simulation Data Inspector (SDI) and the third-party calibration tools (Vector CANape
and ETAS Inca) are mutually exclusive. If you use SDI to view signal data, you cannot
use the calibration tools. If you use the calibration tools, you cannot use SDI to view
signal data.

Master Cannot Connect

Check the IP address of the target computer associated with the model and compare it
with the address stored in the ASAP2 file.

ASAP2 File Out of Date

When you rebuild a Simulink Real-Time application, update the ASAP2 file loaded in the
calibration tool with the new version of the file. The ASAP2 file is valid only until the
next time you build the application.

2 Third-Party Calibration Support

2-14

Calibrate Parameters with ETAS Inca
This example shows how to view signals and tune parameters by using ETAS Inca. You
must have already completed the steps in “Prepare ASAP2 Data Description File” on
page 2-4.

You also must be familiar with the ETAS Inca user interface. For information about the
user interface, see the vendor documentation (www.etas.com).

In this section...
“Prepare Database” on page 2-15
“Prepare Project” on page 2-15
“Prepare Workspace” on page 2-16
“Prepare Experiment” on page 2-16
“Configure Signals and Parameters” on page 2-16
“Perform Signal Measurement and Parameter Calibration” on page 2-16

Prepare Database

1 Build and download real-time application ex_slrt_cal_osc.
2 Open ETAS Inca.
3 Add an ETAS Inca database with folder named SLRTDatabase.
4 Add subfolders named Experiment, Project, and Workspace.

Prepare Project

1 Under folder Project, add an ECU project.
2 When prompted, select A2L file ex_slrt_cal_osc_slrt.a2l in your build folder.

Ignore the prompt for a HEX file.

If you change and rebuild the real-time application, delete the ECU project and
recreate it with the new A2L file.

 Calibrate Parameters with ETAS Inca

2-15

http://www.etas.com

Prepare Workspace
1 Under folder Workspace, add workspace ex_slrt_cal_osc_wksp.
2 Add project ex_slrt_cal_osc_slrt to workspace ex_slrt_cal_osc_wksp.
3 When prompted, add an Ethernet system XCP device to the workspace.
4 Configure the XCP device and initialize it. Auto configure the ETAS network.
5 To upload data from the device hardware, use enhanced operations on memory

pages.

Data is uploaded from the real-time application on the target computer.

Prepare Experiment
1 Under folder Experiment, add experiment ex_slrt_cal_osc_exp.
2 Add experiment ex_slrt_cal_osc_exp to workspace ex_slrt_cal_osc_wksp.

Configure Signals and Parameters
1 Start experiment ex_slrt_cal_osc_exp.
2 To create graphic controls for the variables, add variables Kg, DampedOsc,

SignalGenerator, L_1D, L_2D, and zdata.
3 Add YT oscilloscopes for DampedOsc, SignalGenerator, L_1D, L_2D.
4 For each signal, set the rate to the base sample rate of the real-time application (250

µs).

Perform Signal Measurement and Parameter Calibration
1 Start the ETAS Inca measurement.
2 In Simulink Real-Time Explorer, start the real-time application.

The signal windows show the four waveforms, corresponding to the displays on the
target computer screen.

3 To shorten the ring time on DampedOsc, L_1D, and L_2D, set parameter Kg to, for
example, 800.

4 As required, toggle between reference page and working page.

2 Third-Party Calibration Support

2-16

5 To freeze the parameter set on the target computer, use the freeze working data
command.

To save the working data on the development computer, use the save working data
command.

See Also

More About
• “Prepare ASAP2 Data Description File” on page 2-4
• “ETAS Inca Limitations” on page 2-18
• “ETAS Inca Troubleshooting” on page 2-19

External Websites
• www.etas.com

 See Also

2-17

http://www.etas.com

ETAS Inca Limitations
For ETAS Inca, the Simulink Real-Time software does not support:

• Starting and stopping the real-time application by using ETAS Inca commands.

To start and stop the real-time application on the target computer, use the Simulink
Real-Time start and stop commands, for example start(tg), stop(tg).

• ETAS Inca flash programming.
• Multiple simultaneous ETAS Inca connections to a single target computer.

Event mode data acquisition has the following limitations:

• Every piece of data that the Simulink Real-Time software adds to the event list slows
the real-time application. The amount of data that you can observe depends on the
model sample time and the speed of the target computer. It is possible to overload the
target computer CPU to where data integrity is reduced.

• You can trace only signals and scalar parameters. You cannot trace vector
parameters.

2 Third-Party Calibration Support

2-18

ETAS Inca Troubleshooting

Simulation Data Inspector in Use

Simulation Data Inspector (SDI) and the third-party calibration tools (Vector CANape
and ETAS Inca) are mutually exclusive. If you use SDI to view signal data, you cannot
use the calibration tools. If you use the calibration tools, you cannot use SDI to view
signal data.

Master Cannot Connect

Check the IP address of the target computer associated with the model and compare it
with the address stored in the ASAP2 file.

ASAP2 File Out of Date

When you rebuild a Simulink Real-Time application, update the ASAP2 file loaded in the
calibration tool with the new version of the file. The ASAP2 file is valid only until the
next time you build the application.

Cannot Disable Freeze Mode

Remove the dataset file from the target file system and reset the parameters to the
original values specified in your model. The dataset file is named
flashdata_model_name.dat.

 ETAS Inca Troubleshooting

2-19

Real-Time Application Setup

21

Real-Time Application Environment

• “Default Target Computers” on page 3-2
• “Command-Line C Compiler Configuration” on page 3-3
• “Command-Line Setup” on page 3-5
• “Command-Line PCI Bus Ethernet Setup” on page 3-6
• “Command-Line USB-to-Ethernet Setup” on page 3-10
• “Ethernet Card Selection by Index” on page 3-15
• “Command-Line Ethernet Card Selection by Index” on page 3-17
• “Command-Line Target Computer Settings” on page 3-20
• “Command-Line Target Computer Boot Methods” on page 3-22
• “Command-Line Kernel Creation Prechecks” on page 3-23
• “Command-Line Network Boot Method” on page 3-24
• “Command-Line CD/DVD Boot Method” on page 3-26
• “Command-Line DOS Loader Boot Method” on page 3-27
• “Command-Line Removable Disk Boot Method” on page 3-29
• “Command-Line Standalone Boot Method” on page 3-31

3

Default Target Computers
When you start Simulink Real-Time Explorer for the first time, it opens a default node,
TargetPC1. You can configure this node for a target computer, then connect the node to
the target computer. If you later build a real-time application from a Simulink model, the
Simulink Real-Time software builds and downloads that application to the default target
computer.

You can add other target computer nodes and designate one of them as the default target
computer instead of the first one. To set a target computer node as the default, right-click
that node and select Set As Default Target from the context-sensitive menu. The
default target computer node is boldface.

If you delete a default target computer node, the target computer node preceding it
becomes the default target computer node. The last target computer node becomes the
default target computer node and cannot be deleted.

If you want to use the Simulink Real-Time command-line interface to work with the
target computer, you must indicate which target computer the command is interacting
with. If you do not identify a particular target computer, the Simulink Real-Time
software uses the default target computer.

TheSimulinkRealTime target computer environment, manages collective and
individual target computer environments. See “Command-Line Setup” on page 3-5.

When you call SimulinkRealTime.getTargetSettings without arguments (for
example, env = SimulinkRealTime.getTargetSettings), the constructor gets the
real-time environment settings for the default target computer.

When you call slrt without arguments (for example, tg = slrt), the constructor uses
the link properties of the default target computer to communicate with the target
computer.

3 Real-Time Application Environment

3-2

Command-Line C Compiler Configuration
To configure the development computer for the C compiler using MATLAB language, use
this procedure.

The command mex -setup sets the default compiler for Simulink Real-Time builds,
provided the MEX compiler is a supported Microsoft® compiler. Use slrtsetCC -setup
only if you require different compilers for MEX and Simulink Real-Time.

Note By default, the Microsoft Visual Studio® 2015 installer does not install the C++
compiler that Simulink Real-Time requires. To install the C++ compiler, perform a
custom install and select the C++ compiler. If you already installed Microsoft Visual
Studio with the default configuration, rerun the installer and select the modify option.

1 Install a supported C compiler on the development computer.

For more about the Simulink Real-Time C compiler requirements, see
www.mathworks.com/support/compilers/current_release.

2 In the Command Window, type:

slrtsetCC setup

The function queries the development computer for C compilers that the Simulink
Real-Time environment supports. It returns output like the following:
Select your compiler for Simulink Real-Time.

[1] Microsoft Visual C++ Compilers 2008 Professional Edition (SP1) in
 c:\Program Files (x86)\Microsoft Visual Studio 9.0
[2] Microsoft Visual C++ Compilers 2010 Professional in
 C:\Program Files (x86)\Microsoft Visual Studio 10.0

[0] None

Compiler:

3 At the Compiler prompt, enter the number for the compiler that you want to use.
For example, 2.

The function verifies that you have selected the required compiler:

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional

 Command-Line C Compiler Configuration

3-3

https://www.mathworks.com/support/compilers/current_release/

Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Are these correct [y]/n?
4 Type y or press Enter.

3 Real-Time Application Environment

3-4

Command-Line Setup
Use the following procedures to configure single- and multiple-target systems.

You must have installed and configured a C compiler and verified the target computer
BIOS settings. If not, see:

• “Command-Line C Compiler Configuration” on page 3-3.
• “BIOS Settings”

1 “Command-Line PCI Bus Ethernet Setup” on page 3-6 or “Command-Line USB-to-
Ethernet Setup” on page 3-10

2 “Command-Line Target Computer Settings” on page 3-20
3 “Command-Line Target Computer Boot Methods” on page 3-22

The next task is “Run Confidence Test on Configuration”.

 Command-Line Setup

3-5

Command-Line PCI Bus Ethernet Setup
If your target computer has a PCI bus, use an Ethernet card for the PCI bus. The PCI
bus has a faster data transfer rate than the other bus types.

In this section...
“PCI Bus Ethernet Protocol Hardware” on page 3-6
“Command-Line PCI Bus Ethernet Settings” on page 3-7

PCI Bus Ethernet Protocol Hardware

To install PCI bus Ethernet protocol interface hardware:

1 Acquire a supported PCI bus Ethernet card.

If you want to start the target computer from the network, check that the Ethernet
adapter is compatible with the Preboot eXecution Environment (PXE) specification.

2 Turn off your target computer.
3 If the target computer already has an unsupported Ethernet card, remove the card.

To get a list of the PCI devices that are installed on the target computer, call
SimulinkRealTime.target.getPCIInfo.

4 Plug the supported Ethernet card into a free PCI bus slot.
5 Assign a static IP address to the target computer Ethernet card.

3 Real-Time Application Environment

3-6

Unlike the target computer, the development computer network adapter card can
have a dynamic host configuration protocol (DHCP) address and can be accessed
from the network. Configure the DHCP server to reserve static IP addresses to
prevent these addresses from being assigned to other systems.

6 Connect your target computer Ethernet card to your LAN using an unshielded
twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with RJ45
connectors. Both computers must have static IP addresses. If the development
computer has a second network adapter card, that card can have a DHCP address.

Command-Line PCI Bus Ethernet Settings

After you install the PCI bus Ethernet card, to build and download a real-time
application, first specify the environment properties for the development and target
computers.

Before you start, ask your system administrator for the following information for your
target computer:

• IP address
• Subnet mask address
• Port number (optional)
• Gateway (optional)

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, create an environment object for this target computer and
make it the default target:

env = SimulinkRealTime.addTarget('TargetPC1');
setAsDefaultTarget(env);

You make the other settings to this object.
2 Set the IP address for your target computer. For example:

env.TcpIpTargetAddress = '10.10.10.15';
3 Set the subnet mask address of your LAN. For example:

env.TcpIpSubNetMask = '255.255.255.0';

 Command-Line PCI Bus Ethernet Setup

3-7

4 Set the TCP/IP port (optional) to a value higher than '20000' and less than
'65536'. For example:

env.TcpIpTargetPort = '22222';

This property is set by default to '22222', a value higher than the reserved area
(telnet, ftp, and so on).

5 Set the TCP/IP gateway (optional) to the gateway required to access the target
computer. For example:
env.TcpIpGateway = '255.255.255.255';

This property is set by default to '255.255.255.255', which means that you do
not use a gateway to connect to your target computer. If you connect your computers
with a crossover cable, leave this property as '255.255.255.255'.

If you communicate with the target computer from within your LAN, do not change
the default setting. If you communicate from a development computer within a LAN
different from your target computer, define a gateway and enter its IP address here.
In particular, create a gateway if you access the target computer via the Internet.

6 Set the bus type to 'PCI'.

env.TcpIpTargetBusType = 'PCI';
7 Set the target driver to one of 'I210', 'I217', 'I8254x', 'I82559', 'R8139',

'R8168', or 'Auto' (the default).

env.TcpIpTargetDriver = 'Auto';

For target driver 'Auto', the software determines the target computer TCP/IP
driver from the card installed on the target computer. If a supported Ethernet card is
not installed in your target computer, the software returns an error.

8 If the target computer has multiple Ethernet cards, follow the procedure in
“Command-Line Ethernet Card Selection by Index” on page 3-17.

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Settings” on page 3-20.

See Also
SimulinkRealTime.target.getPCIInfo

3 Real-Time Application Environment

3-8

More About
• “Ethernet Card Selection by Index” on page 3-15
• “Command-Line Ethernet Card Selection by Index” on page 3-17

 See Also

3-9

Command-Line USB-to-Ethernet Setup
If the target computer has a USB 2.0 port but does not have a supported PCI Ethernet
card, use a USB-to-Ethernet adapter.

In this section...
“USB-to-Ethernet Protocol Hardware” on page 3-10
“Command-Line USB-to-Ethernet Settings” on page 3-12

USB-to-Ethernet Protocol Hardware

You can plug the USB-to-Ethernet adapter into the development computer or the target
computer. The setup is slightly different for each location.

Development Computer USB Port

To connect the USB-to-Ethernet protocol interface hardware to the USB port on the
development computer:

1 Acquire a supported PCI bus Ethernet card.

If you want to start the target computer from the network, check that the Ethernet
adapter is compatible with the Preboot eXecution Environment (PXE) specification.

2 Turn off your target computer.
3 If the target computer already has an unsupported Ethernet card, remove the card.

3 Real-Time Application Environment

3-10

To get a list of the PCI devices that are installed on the target computer, call
SimulinkRealTime.target.getPCIInfo.

4 Plug the supported Ethernet card into a free PCI bus slot.
5 Acquire a supported USB-to-Ethernet adapter.

If you want to start the target computer from the network, check that the Ethernet
adapter is compatible with the Preboot eXecution Environment (PXE) specification.

6 Plug the USB-to-Ethernet adapter into the USB port in the development computer.

Do not connect the development computer USB port to a target computer USB port
using a plain USB cable. A USB-to-Ethernet adapter plugged into the development
computer USB port behaves like an Ethernet card installed in the development
computer.

7 Connect the USB-to-Ethernet adapter from your development computer to your LAN
using an unshielded twisted-pair (UTP) cable.

8 Connect the target computer Ethernet card to your LAN using another UTP cable.

You can directly connect your computers using a crossover UTP cable with RJ45
connectors. Both computers must have static IP addresses. If the development
computer has a second network adapter, that adapter can have a DHCP address.

Target Computer USB Port

To connect the USB-to-Ethernet protocol interface hardware to the USB port on the
target computer:

1 Acquire a supported USB-to-Ethernet adapter.

 Command-Line USB-to-Ethernet Setup

3-11

2 Turn off your target computer.
3 Prepare a boot drive according to the instructions in “Target Computer Boot

Methods”.

You cannot use the network boot method with this hardware configuration.
4 Plug the USB-to-Ethernet adapter into the USB port in the target.

Do not connect the development computer USB port to the target computer USB port
using a plain USB cable. A USB-to-Ethernet adapter plugged into the target
computer USB port behaves like an Ethernet card installed on the target computer.

5 Connect the USB-to-Ethernet adapter to your LAN using an unshielded twisted-pair
(UTP) cable.

6 Assign a static IP address to the target computer USB-to-Ethernet adapter.

Unlike the target computer, the development computer network adapter card can
have a dynamic host configuration protocol (DHCP) address and can be accessed
from the network. Configure the DHCP server to reserve static IP addresses to
prevent these addresses from being assigned to other systems.

7 Connect your development computer Ethernet card to your LAN using an unshielded
twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with RJ45
connectors. Both computers must have static IP addresses. If the development
computer has a second network adapter, that adapter can have a DHCP address.

Command-Line USB-to-Ethernet Settings

After you have installed the USB-to-Ethernet adapter, to build and download a real-time
application, first specify the environment properties for the development and target
computers.

Before you start, ask your system administrator for the following information for your
target computer:

• IP address
• Subnet mask address
• Port number (optional)
• Gateway (optional)

3 Real-Time Application Environment

3-12

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, create an environment object for this target computer and
make it the default target:

env = SimulinkRealTime.addTarget('TargetPC1');
setAsDefaultTarget(env);

You make the other settings to this object.
2 Set the IP address for your target computer. For example:

env.TcpIpTargetAddress = '10.10.10.15';
3 Set the subnet mask address of your LAN. For example:

env.TcpIpSubNetMask = '255.255.255.0';
4 Set the TCP/IP port (optional) to a value higher than '20000' and less than

'65536'. For example:

env.TcpIpTargetPort = '22222';

This property is set by default to '22222', a value higher than the reserved area
(telnet, ftp, and so on).

5 Set the TCP/IP gateway (optional) to the gateway required to access the target
computer. For example:

env.TcpIpGateway = '255.255.255.255';

This property is set by default to '255.255.255.255', which means that you do
not use a gateway to connect to your target computer. If you connect your computers
with a crossover cable, leave this property as '255.255.255.255'.

If you communicate with the target computer from within your LAN, do not change
the default setting. If you communicate from a development computer within a LAN
different from your target computer, define a gateway and enter its IP address here.
In particular, create a gateway if you access the target computer via the internet.

6 Set the bus type to 'USB'.

env.TcpIpTargetBusType = 'USB';
7 Set the target driver to one of 'USBAX772', 'USBAX172', or 'Auto'.

env.TcpIpTargetDriver = 'Auto';

 Command-Line USB-to-Ethernet Setup

3-13

If the target driver is 'Auto', the software sets the driver to 'USBAX772', the
driver most commonly used.

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Settings” on page 3-20.

See Also
SimulinkRealTime.target.getPCIInfo

More About
• “Ethernet Card Selection by Index” on page 3-15
• “Command-Line Ethernet Card Selection by Index” on page 3-17

3 Real-Time Application Environment

3-14

Ethernet Card Selection by Index
If the target computer has multiple Ethernet cards, you must specify which card to use
for the Ethernet link. Use the following procedure to discover the Ethernet index of the
PCI cards on the target computer and to specify which card to use.

Note For this procedure, you must be able to burn CDs on your development computer
and use Network boot mode for routine target operations.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(env);

You make the other settings to this object.
2 At the MATLAB prompt, type:

env.ShowHardware = 'on';

With ShowHardware set, after the kernel starts, the development computer cannot
communicate with the target computer. When you have gathered your information,
to resume normal functionality, set this property to 'off', recreate the boot image,
and restart the target computer.

3 At the MATLAB prompt, type: slrtexplr.
4 In the Targets pane, expand the target computer node.
5 In the toolbar, click the Target Properties button .
6 Select Host-to-Target communication and set Target driver to Auto. If you set

Target driver to a specific driver, such as INTEL_I82559, the kernel displays only
information about boards that use that driver.

7 Select Target settings and clear the Graphics mode check box. This setting
causes the kernel to print text only.

8 Select Boot configuration and set Boot mode to CD.
9 To create a boot disk, click Create boot disk and follow the prompts.

 Ethernet Card Selection by Index

3-15

10 Insert the new boot disk and restart the target computer from the target computer
boot switch.

After the start is complete, the target monitor displays information about the
Ethernet cards in the target computer, for example:

index: 0, driver: R8139, Bus: 16, Slot: 8, Func: 0
index: 1, driver: I82559, Bus: 16, Slot: 9, Func: 0

Check that the boot order allows you to start the target computer from your disk.
You can change the boot order from the target computer BIOS. After the kernel
starts with ShowHardware 'on', the development computer cannot communicate
with the target computer.

11 Note the index of the Ethernet card that you want to use for the Ethernet link, for
example, 2.

12 At the MATLAB prompt, type:

env.ShowHardware = 'off';
env.EthernetIndex = '#';

is the index of the Ethernet card, for example, 2.
13 Select Target settings and select the Graphics mode check box.
14 Set Boot mode to Network.
15 Click Create boot disk.
16 Remove the boot disk from the target computer drive and start the target computer

from the target computer boot switch.

The kernel selects the specified Ethernet card as the target computer card, instead of
the default card with index number 0.

Repeat this procedure as required for each target computer.

3 Real-Time Application Environment

3-16

Command-Line Ethernet Card Selection by Index
If you are using multiple target computers that have multiple Ethernet cards, you must
specify which card to use for the Ethernet link. Use the following procedure to discover
the Ethernet index of the PCI cards on a specific target and specify which card to use.

Note For this procedure, you must be able to burn CDs on your development computer
and use network boot mode for routine target operations.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(env);

You make the other settings to this object.
2 At the MATLAB prompt, type:

env.ShowHardware = 'on';

With ShowHardware set, after the kernel starts, the development computer cannot
communicate with the target computer. When you have gathered your information,
to resume normal functionality, set this property to 'off', recreate the boot image,
and restart the target computer.

3 Set the Ethernet driver to the default:

env.TcpIpTargetDriver = 'Auto';

If TcpIpTargetDriver is set to a specific driver, such as 'I82559', the kernel
displays only information about boards that use that driver.

4 Set the boot method to CD/DVD boot:

env.TargetBoot='CDBoot';
5 Set the target monitor to print text only:

env.TargetScope = 'Disabled' ;
6 Type SimulinkRealTime.createBootImage.

 Command-Line Ethernet Card Selection by Index

3-17

The Simulink Real-Time software displays the following message and creates the
CD/DVD boot image.

Current boot mode: CDBoot
CD boot image is successfully created

Insert an empty CD/DVD. Available drives:
 [1] d:\
 [0] Cancel Burn

7 Insert the new boot disk and restart the target computer from the target computer
boot switch.

After the start is complete, the target monitor displays information about the
Ethernet cards in the target computer, for example:

index: 0, driver: R8139, Bus: 16, Slot: 8, Func: 0
index: 1, driver: I82559, Bus: 16, Slot: 9, Func: 0

Check that the boot order allows you to start the target computer from your disk.
You can change the boot order from the target computer BIOS. After the kernel
starts with ShowHardware 'on', the development computer cannot communicate
with the target computer.

8 Note the index of the Ethernet card you want to use for the Ethernet link, for
example, 2.

9 At the MATLAB prompt, type:

env.ShowHardware = 'off';
env.EthernetIndex = '#';

is the index of the Ethernet card, for example, 2.
10 Set the boot method back to network boot:

env.TargetBoot= 'NetworkBoot';
11 Set the target monitor to graphics mode:

env.TargetScope = 'Enabled' ;
12 Type SimulinkRealTime.createBootImage.
13 Start the target computer from the target computer boot switch.

The kernel selects the specified Ethernet card as the target computer card, instead of
the default card with index number 0.

3 Real-Time Application Environment

3-18

Repeat this procedure as required for each target computer.

 Command-Line Ethernet Card Selection by Index

3-19

Command-Line Target Computer Settings
To run a Simulink Real-Time model on a target computer, you must configure the target
settings to match the capabilities of the target computer.

Note

• The NonPentiumSupport property has ceased to function. Use a target computer
with an Intel® Pentium or AMD® K5/K6/Athlon processor.

• In a future release, the SecondaryIDE target setting will be read-only and set to
'off'.

• The MulticoreSupport target setting is read-only and set to 'on'. Single-core
target computers still function.

• The property MaxModelSize has no function.
• The RAM size check box has been removed from Simulink Real-Time Explorer. The

property value TargetRAMSizeMB continues to function.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(env);

You make the other settings to this object.
2 Assign the following target computer settings as required:

• Target scope display

• env.TargetScope='Enabled' (the default) — Use to display information,
such as a target scope, in graphic format.

• env.TargetScope='Disabled' — Use to display information as text.

To use the full features of a target scope, install a keyboard on the target
computer.

3 Real-Time Application Environment

3-20

• USB support

• env.USBSupport='on' (the default) — Use to enable USB ports on the
target computer; for example, to connect a USB keyboard.

• env.USBSupport='off' — Otherwise.
• Target RAM size

env.TargetRAMSizeMB='Auto' (the default) — Use to read the target
computer BIOS and determine the amount of memory installed in the target
computer.

env.TargetRAMSizeMB='xxx' — Use if the real-time application cannot read
the BIOS. Assign the amount of memory, in megabytes, installed in the target
computer.

The Target RAM size parameter defines the total amount of installed RAM in the
target computer. This memory is the memory that is available for the kernel,
real-time application, data logging, and other functions that use the heap.

Target computer memory for the real-time application executable, the kernel, and
other uses is limited to a maximum of 4 GB.

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Boot Methods” on page 3-22.

 Command-Line Target Computer Settings

3-21

Command-Line Target Computer Boot Methods
You can start your target computer with the Simulink Real-Time kernel using one of
several methods.

Speedgoat systems come with DOS Loader software preinstalled. You can set up the DOS
Loader boot method on your development computer or configure another boot method.
See your Speedgoat system documentation or follow the link from “Speedgoat Real-Time
Target Machines” for further information.

1 Before creating a boot kernel, perform “Command-Line Kernel Creation Prechecks”
on page 3-23.

2 Select one of the following methods:

• “Command-Line Network Boot Method” on page 3-24
• “Command-Line CD/DVD Boot Method” on page 3-26
• “Command-Line DOS Loader Boot Method” on page 3-27
• “Command-Line Removable Disk Boot Method” on page 3-29
• “Command-Line Standalone Boot Method” on page 3-31

3 For boot methods other than StandAlone, perform “Run Confidence Test on
Configuration”.

For boot method StandAlone, create a model-specific confidence test, restart the
target computer, and run that confidence test. The default confidence test is not
intended for standalone execution.

3 Real-Time Application Environment

3-22

Command-Line Kernel Creation Prechecks
Before creating the target boot kernel, configure your Simulink Real-Time system. At a
minimum, do the following:

1 Check the physical connections between the development computer and the target
computer. These Ethernet connections can pass through a LAN.

2 Check your target computer BIOS settings (see “BIOS Settings”).
3 Check that you have write permission for your current working folder.
4 At the MATLAB prompt, get the environment object for this target computer and

make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(env);

The contents of environment object env are printed in the Command Window.
5 Check the link settings. See “Command-Line PCI Bus Ethernet Setup” on page 3-6

or “Command-Line USB-to-Ethernet Setup” on page 3-10.
6 Check that TargetBoot is set to the required value.

Repeat this procedure as required for each target computer.

 Command-Line Kernel Creation Prechecks

3-23

Command-Line Network Boot Method
After you have configured the target computer environment parameters, you can use a
dedicated Ethernet network to load and run the Simulink Real-Time kernel. You do not
need a boot CD or removable boot drive.

There are the following limitations:

• Do not use the network boot method on a corporate or nondedicated network. Doing so
can interfere with dynamic host configuration protocol (DHCP) servers and cause
problems with the network.

• Your Ethernet card must be compatible with the Preboot eXecution Environment
(PXE) specification.

• If Stand Alone mode is enabled, you cannot start the target computer across the
network.

Before you start, establish the required Ethernet connection between development and
target computers using the procedures in “Command-Line PCI Bus Ethernet Setup” on
page 3-6 or “Command-Line USB-to-Ethernet Setup” on page 3-10.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(env);

The contents of environment object env are printed in the Command Window. Some
properties can already have the required values.

2 Set network boot method:

env.TargetBoot='NetworkBoot'
3 Set a TCP/IP address. Check that the subnet of this IP address is the same as the

development computer. Otherwise your network boot fails. For example, type:

env.TcpIpTargetAddress='10.10.10.11'
4 Set the target computer MAC address (in hexadecimal). For example, type:

env.TargetMACAddress='01:23:45:67:89:ab'

3 Real-Time Application Environment

3-24

5 In the Command Window, type:

SimulinkRealTime.createBootImage

The following message appears:

Current boot mode: NetworkBoot
Synchronizing network boot table....ok
Starting network boot server....ok
Creating batch file (slrtnetboot.bat)....ok
Network boot image created successfully

The software creates and starts a network boot server process on the development
computer. You start the target computer using this process.

A minimized icon () representing the network boot server process appears on the
bottom right of the development computer system tray.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

 Command-Line Network Boot Method

3-25

Command-Line CD/DVD Boot Method
After you have configured the target computer environment parameters, you can use a
target boot CD or DVD to load and run the Simulink Real-Time kernel. This topic
describes using the MATLAB command line to create a boot CD or DVD for a single
target computer system.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(env);

You make the other settings to this object.
2 Set the CD boot method:

env.TargetBoot='CDBoot'
3 In the Command Window, type SimulinkRealTime.createBootImage.

The Simulink Real-Time software displays the following message and creates the
CD/DVD boot image.

Current boot mode: CDBoot
CD boot image is successfully created

Insert an empty CD/DVD. Available drives:
 [1] d:\
 [0] Cancel Burn

4 Insert the empty CD or DVD in the development computer.
5 Type 1 and then press Enter.
6 When the write operation has finished, remove the CD or DVD from the drive.
7 Insert the bootable CD/DVD into your target computer drive and restart the target

computer.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

3 Real-Time Application Environment

3-26

Command-Line DOS Loader Boot Method
In DOS Loader mode, you start the Simulink Real-Time kernel on a target computer
from a fixed or removable device with DOS boot capability. Examples include a hard disk
or a flash memory stick. After starting the target computer, you can download your real-
time application from the development computer over an Ethernet link between the
development and target computers.

To run in DOS Loader mode, the target computer boot device must provide a minimal
DOS environment complying with certain restrictions. For details, see:

• “Create a DOS System Disk”
• “DOS Loader Mode Restrictions”

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(env);

You make other settings to this object.
2 Set the DOS Loader boot method:

env.TargetBoot = 'DOSLoader';
3 Set DOSLoaderLocation to the folder where you want to create the DOS Loader

boot files. This location can be a local folder on the development computer or a
removable storage device that you use to start the target computer. By default, the
folder is the current working folder.

env.DOSLoaderLocation = 'D:\';
4 In the Command Window, type SimulinkRealTime.createBootImage.

The Simulink Real-Time software displays the following message:

Current boot mode: DOSLoader
Simulink Real-Time DOS Loader files are successfully created

This operation creates the following boot files in the specified location:
autoexec.bat

 Command-Line DOS Loader Boot Method

3-27

xpcboot.com
*.rtb

5 If you create boot files on a local hard disk, copy these files to a floppy disk, CD/DVD,
or other removable storage media.

6 Transfer the boot files to your target computer or insert the removable media
containing the boot files into the target computer drive or USB port.

7 Check that autoexec.bat file is on the DOS boot path (typically the root folder).
8 Select the required boot device in the BIOS of the target computer.
9 Start the target computer.

When the target computer starts, it loads DOS, which executes the autoexec.bat
file. This file starts the Simulink Real-Time kernel (*.rtb). The target computer then
awaits commands from the development computer.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

3 Real-Time Application Environment

3-28

Command-Line Removable Disk Boot Method
After you have configured the target computer environment parameters, use a removable
drive or USB flash drive to load and run the Simulink Real-Time kernel. This topic
describes using the MATLAB command line to create a removable boot disk.

If you are creating a removable boot drive from a USB flash drive, before performing this
procedure, create a bootable partition on the drive. See “Create a Bootable Partition”.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(env);

You make the other settings to this object.
2 In the output of the setAsDefaultTarget command, check that property

TargetBoot is BootFloppy.

You can update property TargetBoot by using the command
env.TargetBoot='BootFloppy'.

3 If you are creating a removable boot disk from a USB drive, insert the USB drive in
the development computer USB port. Wait for it to be recognized.

4 In the Command Window, type SimulinkRealTime.createBootImage.

The Simulink Real-Time software creates the CD/DVD boot image and displays the
following message:

Current boot mode: BootFloppy
Insert a formatted floppy disk into your host PC's
disk drive and press a key to continue

5 Insert an empty removable disk in the development computer drive and then press a
key.

6 When the write operation has finished, remove the removable disk from the drive or
USB port.

7 Insert the removable boot disk into your target computer drive or USB port and
restart the target computer.

 Command-Line Removable Disk Boot Method

3-29

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

3 Real-Time Application Environment

3-30

Command-Line Standalone Boot Method
Using the MATLAB command line, you can configure the Simulink Real-Time software
to run as a standalone real-time application. For information on Boot mode Stand
Alone, see “Standalone Mode”.

To run in Stand Alone mode, the target computer and its DOS environment must meet
specific requirements and restrictions.

In this section...
“Target Computer Requirements” on page 3-31
“DOS Environment Restrictions” on page 3-32
“Command-Line Standalone Settings” on page 3-32
“Real-Time Application Build” on page 3-33
“Real-Time Application Transfer and Boot Configuration” on page 3-34

Target Computer Requirements
To run in Stand Alone mode, the target computer must meet specific requirements.

In Stand Alone mode, the real-time application and the kernel are available on a hard
drive or flash memory. The kernel and real-time application start together on the target
computer. The development computer can be disconnected from the target computer, but
the target computer must be able to start from DOS.

For each target computer, check that the system meets the following requirements:

• The target computer must be equipped with a bootable drive, such as a serial ATA
(SATA) drive or a flash drive.

• The target computer must not cable select the boot drive.
• The target computer BIOS must be able to detect the boot drive.
• The boot drive must be formatted as a FAT-32 file system.
• Install a supported version of DOS on the boot drive. You can create a standard DOS

boot device from a CD ROM, 3.5–inch floppy drive, flash drive, or hard drive. See
“Create a DOS System Disk”.

• Configure the Ethernet link. This communication transfers the kernel and real-time
application files built on the development computer to the target computer.

 Command-Line Standalone Boot Method

3-31

DOS Environment Restrictions

To use Stand Alone mode, the target computer DOS environment must comply with the
following restrictions:

• The CPU must execute in real mode.
• While loaded in memory, the DOS partition must not overlap the address range of a

real-time application.

To satisfy these restrictions:

• Avoid additional memory managers, such as emm386 or qemm.
• Avoid utilities that attempt to load in high memory (for example, himem.sys).
• Avoid including memory manager entries in the autoexec.bat file.
• Avoid using a config.sys file.

If you want to use real-time Scope blocks to display or record output, there are additional
restrictions:

• Use only Target or File type blocks.
• Select the Start scope when application starts check box in the block parameters

dialog box.

Command-Line Standalone Settings

Use the command line to set the kernel environment properties. When you are done, you
can create a standalone kernel combined with your real-time application.

For Boot mode Stand Alone, you do not create a Simulink Real-Time boot disk or
network boot image. Instead, you copy files created from the build process to the target
computer hard drive.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the environment object for this target computer and
make it the default target:

env = SimulinkRealTime.getTargetSettings('TargetPC1');
setAsDefaultTarget(env);

3 Real-Time Application Environment

3-32

You make other settings to this object.
2 Set network boot method:

env.TargetBoot='StandAlone';

Repeat this procedure as required for each target computer.

Real-Time Application Build

After you set Simulink Real-Time boot mode to Stand Alone, you can use Simulink
Real-Time, Simulink Coder, and a C/C++ compiler in Stand Alone mode to build a
standalone kernel and real-time application with utility files.

1 In the Command Window, open your Simulink model, for example,
ex_slrt_rt_osc (matlab: open_system(docpath(fullfile(docroot,
'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))). Simulink Editor
opens displaying the model.

2 From the Code menu, click C/C++ Code > Build Model.

The Simulink Coder and Simulink Real-Time software create a folder,
ex_slrt_rt_osc_slrt_emb, containing the following files:

• autoexec.bat — Contains Simulink Real-Time-specific code that calls the
xpcboot.com executable to start the Simulink Real-Time kernel (the *.rtb file).

• xpcboot.com — Loads and executes the *.rtb file. This static file is part of the
Simulink Real-Time software.

• slrtkrnl.rtb — Contains the Simulink Real-Time standalone kernel. This
image also contains applicable options, such as the IP address of the target
computer.

• ex_slrt_rt_osc.mldatx — Contains the real-time application and application-
specific data.

You do not need a config.sys file to start the kernel using autoexec.bat and
xpcboot.com.

Repeat this procedure as required for each real-time application.

 Command-Line Standalone Boot Method

3-33

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))

Real-Time Application Transfer and Boot Configuration

After building the kernel and real-time application on a development computer, transfer
the files to a target computer by using the SimulinkRealTime.fileSystem functions.
Configure the target computer to run the real-time application upon startup.

For this procedure, your target computer must support network boot mode. If it does not
support network boot mode, see “Application Transfer and Boot Configuration with Flash
Drive”.

1 Restart the target computer in DOS mode and open the DOS prompt.

If the target computer was previously started from the network boot image, to
disable the network boot capability, kill the boot server from Windows® Task
Manager.

2 At the DOS prompt, save a copy of the target computer C:\autoexec.bat file to a
backup file, such as C:\autoexec_back.wrk.

3 Start the target computer by using network boot mode.
4 In the Command Window, change to the folder that contains the kernel and real-

time application files.
5 Copy these files to the root folder of the target computer C:\ drive:

tg = slrt;
SimulinkRealTime.copyFileToTarget(tg,'autoexec.bat')
SimulinkRealTime.copyFileToTarget(tg,'xpcboot.com')
SimulinkRealTime.copyFileToTarget(tg,'slrtkrnl.rtb')
SimulinkRealTime.copyFileToTarget(tg,'ex_slrt_rt_osc.mldatx')

6 Restart the target computer.

To boot the kernel and start the real-time application, the target computer executes
the following sequence of calls:

a C:\autoexec.bat
b C:\xpcboot.com
c C:\slrtkrnl.rtb
d C:\<application>.mldatx

Repeat this procedure for each target computer that you start in Stand Alone mode.

3 Real-Time Application Environment

3-34

Continue by testing a real-time application in Stand Alone mode.

 Command-Line Standalone Boot Method

3-35

Signals and Parameters

Changing parameters in your real-time application while it is running, viewing the
resulting signal data, and checking the results, are important prototyping tasks. The
Simulink Real-Time software includes command-line and graphical user interfaces to
complete these tasks.

• “Signal Monitoring Basics” on page 4-4
• “Monitor Signals with Simulink Real-Time Explorer” on page 4-6
• “Monitor Signals with MATLAB Language” on page 4-9
• “Instrument a Stateflow Subsystem” on page 4-11
• “Signal Group Monitoring Formats” on page 4-16
• “Monitor Stateflow States with MATLAB Language” on page 4-17
• “Animate Stateflow Charts with Simulink External Mode” on page 4-18
• “Signal Tracing Basics” on page 4-20
• “ Simulink Real-Time Scope Usage” on page 4-21
• “Target Scope Usage” on page 4-23
• “Configure Real-Time Target Scope Blocks” on page 4-25
• “Create Target Scopes with Simulink Real-Time Explorer” on page 4-31
• “Configure Scope Sampling with Simulink Real-Time Explorer” on page 4-37
• “Trigger Scopes with Simulink Real-Time Explorer” on page 4-41
• “Configure Target Scopes with Simulink Real-Time Explorer” on page 4-51
• “Configure Target Scopes with MATLAB Language” on page 4-55
• “Create Signal Groups with Simulink Real-Time Explorer” on page 4-58
• “Host Scope Usage” on page 4-61
• “Configure Real-Time Host Scope Blocks” on page 4-62
• “Create Host Scopes with Simulink Real-Time Explorer” on page 4-66
• “Configure the Host Scope Viewer” on page 4-71
• “Trace Signals with Simulink External Mode” on page 4-73

4

• “Inspect Simulink® Real-Time™ Data with Simulation Data Inspector” on page 4-76
• “Minimize Data Loss with Simulation Data Inspector Buffered Mode” on page 4-82
• “External Mode Usage” on page 4-87
• “Signal Logging Basics” on page 4-88
• “File Scope Usage” on page 4-90
• “Configure Real-Time File Scope Blocks” on page 4-93
• “Create File Scopes with Simulink Real-Time Explorer” on page 4-98
• “Configure File Scopes with Simulink Real-Time Explorer” on page 4-102
• “Log Signal Data into Multiple Files” on page 4-106
• “Log Signal Data with Outport Blocks and Simulink Real-Time Explorer”

on page 4-110
• “Log Signal Data with Outport Block and MATLAB Language” on page 4-116
• “Signal Logging Buffer Size” on page 4-123
• “Configure File Scopes with MATLAB Language” on page 4-124
• “Tune Parameters with Simulink Real-Time Explorer” on page 4-128
• “Create Parameter Groups with Simulink Real-Time Explorer” on page 4-133
• “Tune Parameters with MATLAB Language” on page 4-136
• “Tune Parameters with Simulink External Mode” on page 4-139
• “Save and Reload Parameters with MATLAB Language” on page 4-141
• “Tunable Block Parameters and Tunable Global Parameters” on page 4-144
• “Tune Inlined Parameters with Simulink Real-Time Explorer” on page 4-147
• “Tune Inlined Parameters with MATLAB Language” on page 4-154
• “Tune Parameter Structures with Simulink Real-Time Explorer” on page 4-156
• “Tune Parameter Structures with MATLAB Language” on page 4-162
• “Define and Update Inport Data” on page 4-166
• “Define and Update Inport Data with MATLAB Language” on page 4-172
• “Inport Data Mapping Limitations” on page 4-177
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178
• “Signals Not Accessible by Name” on page 4-183
• “Parameters Not Accessible by Name” on page 4-185

4 Signals and Parameters

4-2

• “Internationalization Issues” on page 4-186

 Command-Line Standalone Boot Method

4-3

Signal Monitoring Basics
Signal monitoring acquires real-time signal data without time information during real-
time application execution. There is minimal additional load on the real-time tasks. Use
signal monitoring to acquire signal data without creating scopes that run on the target
computer.

In addition to signal monitoring, Simulink Real-Time enables you to monitor Stateflow®
states as test points through the Simulink Real-Time Explorer and MATLAB command-
line interfaces. You designate data or a state in a Stateflow diagram as a test point,
making it observable during execution. You can work with Stateflow states as you do
with Simulink Real-Time signals, such as monitoring or plotting Stateflow states.

When you monitor signals from referenced models, first set the test point for the signal in
the referenced model.

Note

• Simulink Real-Time Explorer works with multidimensional signals in column-major
format.

• Some signals are not observable.

You can monitor signals using Simulink Real-Time Explorer and MATLAB language.
You can monitor Stateflow states using Simulink Real-Time Explorer, MATLAB
language, and Simulink external mode.

See Also

More About
• “Signals Not Accessible by Name” on page 4-183
• “Simulink Real-Time Scope Usage” on page 4-21
• “Target Scope Usage” on page 4-23
• “Host Scope Usage” on page 4-61
• “File Scope Usage” on page 4-90

4 Signals and Parameters

4-4

• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

 See Also

4-5

Monitor Signals with Simulink Real-Time Explorer
This procedure uses the model xpcosc. You must have already completed the following
setup:

1 Built and downloaded the real-time application to the target computer using
Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (Tools > Simulink Real-Time).
3 Connected to the target computer in the Targets pane (on the toolbar).
4 Set property Stop time to inf in the Applications pane (on the toolbar).

To monitor a signal:

1 In Simulink Real-Time Explorer, expand the Model Hierarchy node under the real-
time application node.

2 To view the signals in the real-time application, select the model node. On the
toolbar, click the View Signals button . The Signals workspace opens.

3 To view the value of a signal, in the Signals workspace, select the Monitor check
box for the signal. For instance, select the check boxes for Signal Generator and
Integrator1. The signal values are shown in the Monitoring Value column.

4 To start execution, click the real-time application. On the toolbar, click the Start
button .

5 To stop execution, click the real-time application. On the toolbar, click the Stop
button .

The Application Properties and Signals workspaces look like this figure.

4 Signals and Parameters

4-6

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

 Monitor Signals with Simulink Real-Time Explorer

4-7

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

See Also

More About
• “Create Signal Groups with Simulink Real-Time Explorer” on page 4-58
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178
• “Signal Group Monitoring Formats” on page 4-16
• “Signals Not Accessible by Name” on page 4-183

4 Signals and Parameters

4-8

Monitor Signals with MATLAB Language
This procedure uses the model ex_slrt_rt_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))). You must have already completed the setup in “Prepare Real-
Time Application with MATLAB Language”.

Note

• Signal access by signal index will be removed in a future release. Access signals by
signal name instead.

• The Simulink Real-Time software lists referenced model signals with their full block
path. For example, ex_slrt_rt_osc/childmodel/gain.

1 To get a list of signals, type:

tg.ShowSignals = 'on'

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 Scopes = 1
 NumSignals = 7
 ShowSignals = on
 Signals =
 INDEX VALUE Type BLOCK NAME LABEL
 0 0.000000 DOUBLE Gain
 1 0.000000 DOUBLE Gain1
 2 0.000000 DOUBLE Gain2
 3 0.000000 DOUBLE Integrator
 4 0.000000 DOUBLE Integrator1
 5 0.000000 DOUBLE Signal Generator
 6 0.000000 DOUBLE Sum
.
.
.

 Monitor Signals with MATLAB Language

4-9

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))

If your signal has a unique label, its label is displayed in the Label column. If the
label is not unique, the command returns an error.

2 To get the value of a signal, use the getsignal method. In the Command Window,
type:

getsignal(tg,'Integrator1')

ans =

 -3.8771

See Also

More About
• “Configure Target Scopes with MATLAB Language” on page 4-55
• “Signals Not Accessible by Name” on page 4-183

4 Signals and Parameters

4-10

Instrument a Stateflow Subsystem
In this section...
“Configure Stateflow States as Test Points” on page 4-11
“Monitor Stateflow States with Simulink Real-Time Explorer” on page 4-13

A Simulink Real-Time model that uses Stateflow blocks can present special
circumstances. For example, if the model implements a control algorithm as a Stateflow
subsystem, the Stateflow signals are not visible to Simulink Real-Time by default.

This procedure uses the model ex_slrt_sf_car (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_sf_car')))).

Configure Stateflow States as Test Points

To make Stateflow signals visible to Simulink Real-Time, mark them as test points:

1 Open ex_slrt_sf_car.
2 Double-click the shift_logic chart.

 Instrument a Stateflow Subsystem

4-11

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_sf_car')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_sf_car')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_sf_car')))

3 In the shift_logic chart, click Tools > Model Explorer.
4 In the Model Explorer, expand ex_slrt_sf_car, and then shift_logic.
5 Expand gear_state, and then select first.
6 To create a test point for the first state, in the State first pane Logging tab,

select the Test point check box.
7 Click Apply.
8 Repeat steps 8–10 for gear_state values second, third, and fourth.
9 Build and download the ex_slrt_sf_car real-time application to the target

computer (on the toolbar).

4 Signals and Parameters

4-12

Monitor Stateflow States with Simulink Real-Time Explorer
1 Open Simulink Real-Time Explorer (Tools > Simulink Real-Time).
2 Connect to the target computer in the Targets pane (on the toolbar).
3 In the Applications pane, expand the real-time application and the Model

Hierarchy node.
4 To view the test point, select shift_logic and click the View Signals

button on the toolbar.
5 In the Signals workspace, select the Monitor check box for gear_state.first,

gear_state.second, gear_state.third, and gear_state.fourth. The values
of the signals are shown in the Monitoring Value column.

6 To start execution, click the real-time application. On the toolbar, click the Start
button .

7 To stop execution, click the real-time application. On the toolbar, click the Stop
button .

 Instrument a Stateflow Subsystem

4-13

4 Signals and Parameters

4-14

See Also

More About
• “Monitor Stateflow States with MATLAB Language” on page 4-17
• “Animate Stateflow Charts with Simulink External Mode” on page 4-18
• “Create Signal Groups with Simulink Real-Time Explorer” on page 4-58
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178
• “Signal Group Monitoring Formats” on page 4-16
• “Signals Not Accessible by Name” on page 4-183

 See Also

4-15

Signal Group Monitoring Formats
When monitoring a signal group using Simulink Real-Time Explorer, you can change the
output format of the group by selecting one of the Format options. The monitoring
formats are an extension of the options used in C sprint format character vectors.
Data Type Digits Meaning Example
F 1–7 Decimal float, with from one

to seven digits to the right
of the decimal point

Decimal 31.5415 with
format F7 is 31.5415000.

E 1–7 Scientific notation, with
from one to seven digits to
the right of the decimal
point

Decimal 31.5415 with
format E7 is 3.1541500E1.

G 1–7 The shorter of F and E, with
from one to seven digits to
the right of the decimal
point

Decimal 31.5415 with
format G7 is 31.5415000.

H 1–7 Hexadecimal integer, one to
seven hexadecimal digits
wide

Decimal 315 with format H7
is 0x000013B.

B 1–7 Binary integer, one to seven
binary digits wide

Decimal 31 with format B7
is 0011111.

See Also

More About
• “Create Signal Groups with Simulink Real-Time Explorer” on page 4-58

4 Signals and Parameters

4-16

Monitor Stateflow States with MATLAB Language
You must have already set Stateflow states as test points in model ex_slrt_sf_car
(matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_sf_car')))). If you have not, see “Configure Stateflow
States as Test Points” on page 4-11.

1 To get a list of signals in the Command Window, type:

tg = slrt
2 To display the signals in the real-time application, type:

tg.ShowSignals = 'on'

The latter causes the Command Window to display a list of the target object
properties for the available signals.

For Stateflow states that you have set as test points, the state appears in the BLOCK
NAME column. For example, assume that you set a test point for the first state of
gear_state in the shift_logic chart of the ex_slrt_sf_car model. The state of
interest, first, appears as follows in the list of signals in the MATLAB interface:

shift_logic:gear_state.first

shift_logic is the path to the Stateflow chart. gear_state.first is the path to
the specific state.

See Also

More About
• “Signals Not Accessible by Name” on page 4-183

 Monitor Stateflow States with MATLAB Language

4-17

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_sf_car')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_sf_car')))

Animate Stateflow Charts with Simulink External Mode
The Simulink Real-Time software supports the animation of Stateflow charts in your
model to provide visual confirmation that your chart behaves as expected.

You must be familiar with the use of Stateflow animation. For more information on
Stateflow animation, see “Animate Stateflow Charts” (Stateflow).

You must have already set Stateflow states as test points in model ex_slrt_sf_car
(matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_sf_car')))). If you have not, see “Configure Stateflow
States as Test Points” on page 4-11.

1 In the Simulink Editor, select Simulation > Mode > External.
2 Select Code > External Mode Control Panel.
3 Select Signal & Triggering.
4 In the Trigger section of the External Signal & Triggering window:

• Set Mode to normal.
• In the Duration box, enter 5.
• Select the Arm when connecting to target check box.

5 Click Apply.
6 Select Simulation > Model Configuration Parameters.
7 Navigate to the Simulink Real-Time Options node.
8 Select the Enable Stateflow animation check box.
9 Click Apply.
10 Build and download the model to the target computer.
11

On the toolbar, click the Connect To Target button .

The current Simulink model parameters are downloaded from the development
computer to the real-time application.

12
To start the simulation, click the Run button on the toolbar.

The simulation begins to run. You can observe the animation by opening the
Stateflow Editor for your model.

4 Signals and Parameters

4-18

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_sf_car')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_sf_car')))

13
To stop the simulation, click the Stop button on the toolbar.

Note Enabling the animation of Stateflow charts also displays additional Stateflow
information. The Stateflow software requires this information to animate charts. You can
disregard this information.

See Also

More About
• “Signals Not Accessible by Name” on page 4-183

 See Also

4-19

Signal Tracing Basics
Signal tracing acquires signal and time data from a real-time application. While the real-
time application is running, you can visualize the data on the target computer using a
target scope. You can also upload the data to the development computer and display it
using a host scope.

You trace signals using target and host scopes and view them using Simulink Real-Time
Explorer, Simulink external mode, MATLAB language, and a web browser interface.

Simulink Real-Time Explorer can display multidimensional signals in column-major
format.

Some signals are not observable.

See Also

More About
• “Signals Not Accessible by Name” on page 4-183
• “Simulink Real-Time Scope Usage” on page 4-21
• “Target Scope Usage” on page 4-23
• “Host Scope Usage” on page 4-61
• “File Scope Usage” on page 4-90
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

4 Signals and Parameters

4-20

Simulink Real-Time Scope Usage
• To monitor an output signal from a Constant block by connecting it to a Simulink

Real-Time Scope block, add a test point for the Constant block output signal.
• You can add a Simulink Real-Time Scope block only to the topmost model, not to a

referenced model. To log signals from referenced models, use Simulink Real-Time
Explorer scopes or Simulink Real-Time language scope objects.

• When you build and download the real-time application, the Simulink Real-Time
kernel creates a scope representing the real-time Scope block. You can change the
Scope parameters after building the real-time application or while it is running. To
change the parameters, assign the scope to a MATLAB variable using the target
object method SimulinkRealTime.target.getscope. You can use
SimulinkRealTime.target.getscope to remove a scope created during the build
and download process. The Simulink Real-Time kernel recreates the scope when you
restart the real-time application.

• If the output of a Mux block is connected to the input of a Simulink Real-Time Scope
block, the signal is not observable. To observe the signal, add a unit gain block (a
Gain block with a gain of 1) between the Mux block and the Simulink Real-Time
Scope block.

• You can pass vector signals into a Simulink Real-Time Scope block. The real-time
application interprets the vector as a series of individual signals. However, you
cannot pass a matrix signal into a Scope block. Doing so results in a build error. To
display a matrix signal, pass it to a Reshape block and pass the resulting vector into
the Scope block.

• The real-time application can generate data faster than the kernel can process it.
Previous data can be overwritten, causing gaps. If gaps occur in the data, consider
increasing the value of the Decimation property of the scope.

See Also
Gain | Mux | Reshape | SimulinkRealTime.target.getscope

More About
• “Signals Not Accessible by Name” on page 4-183
• “Target Scope Usage” on page 4-23

 Simulink Real-Time Scope Usage

4-21

• “Host Scope Usage” on page 4-61
• “File Scope Usage” on page 4-90
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

4 Signals and Parameters

4-22

Target Scope Usage
• There can be no more than nine target scopes in a model, whether created by using a

real-time Scope block or using the run-time interface. Each target scope can contain
up to 10 signals.

• The combined number of target scopes and Video Display blocks in the model cannot
exceed nine.

• With one graphical target scope active on the target computer, the graphical and
numerical formats are displayed. With more than one target scope active, only the
format that the Scope mode parameter specifies is displayed.

• For a target scope, logged data (sc.Data and sc.Time) is not accessible over the
command-line interface on the development computer. Logged data is accessible only
when the scope object status (sc.Status) is set to Finished. When the scope
completes one data cycle (time to collect the number of samples), the scope engine
restarts the scope instead of setting sc.Status to Finished.

If you create a scope object, for example, sc = getscope(tg,1) for a target scope,
you cannot get the logged data by typing sc.Data. Instead, you get an error message:

Scope # 1 is of type 'Target'! Property Data

 is not accessible.

To view data on the development computer while the data is being displayed on the
target computer, define a second scope object with type host. Then synchronize the
acquisitions of the two scope objects by setting TriggerMode for the second scope to
'Scope'.

• To display the target scope image in a display window on the development computer
screen, use SimulinkRealTime.target.viewTargetScreen.

To save the target scope image to a file, right-click in the display window and then
click Save as image.

See Also
SimulinkRealTime.target.getscope |
SimulinkRealTime.target.viewTargetScreen | Video Display

 Target Scope Usage

4-23

More About
• “Configure Real-Time Target Scope Blocks” on page 4-25
• “Create Target Scopes with Simulink Real-Time Explorer” on page 4-31
• “Simulink Real-Time Scope Usage” on page 4-21
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

4 Signals and Parameters

4-24

Configure Real-Time Target Scope Blocks
Simulink Real-Time includes a specialized Scope block that you can configure to display
signal and time data on the target computer monitor. Add a Scope block to the model,
select Scope type Target, and configure the other parameters as described in the
following procedure.

Do not confuse Simulink Real-Time Scope blocks with standard Simulink Scope blocks.

This procedure uses the example model ex_slrt_rt_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))).

1 In the Command Window, open ex_slrt_rt_osc.
2 Double-click the block labeled Scope.

The Scope block dialog box opens. By default, the target scope dialog box is
displayed.

3 In the Scope number box, a unique number is displayed that identifies the scope.
This number is incremented each time you add a Simulink Real-Time Scope block.

This number identifies the Simulink Real-Time Scope block and the scope screen on
the development or target computers.

4 From the Scope type list, select Target if it is not already selected. The updated
dialog box is displayed.

5 To start the scope automatically when the real-time application executes, select the
Start scope when application starts check box. The target scope opens
automatically on the target computer monitor.

In Stand Alone mode, this setting is mandatory, because the development
computer is not available to issue a command to start scopes.

6 From the Scope mode list, select Numerical, Graphical redraw, or Graphical
rolling. (The Graphical sliding will be removed in a future release. It behaves
like Graphical rolling.)

If you have a scope type of Target and a scope mode of Numerical, the scope block
dialog box adds a Numerical format box. You can define the display format for the
data. If you do not complete the Numerical format box, the Simulink Real-Time

 Configure Real-Time Target Scope Blocks

4-25

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))

software displays the signal using the default format of %15.6f. This format is a
floating-point format without a label.

7 If you select scope mode Numerical, in the Numerical format box, type a label and
associated numerical format type in which to display signals. By default, the entry
format is floating-point without a label, %15.6f. The Numerical format box takes
entries of the format:

'[LabelN] [%width.precision][type] [LabelX]'

• LabelN is the label for the signal. You can use a different label for each signal or
the same label for each signal. This argument is optional.

• width is the minimum number of characters to offset from the left of the screen
or label. This argument is optional.

• precision is the maximum number of decimal places for the signal value. This
argument is optional.

• type is the data type for the signal format. You can use one or more of the
following types.
Type Description
%e or %E Exponential format using e or E
%f Floating point
%g Signed value printed in f or e format, depending on which is

smaller
%G Signed value printed in f or E format, depending on which is

smaller
• LabelX is a second label for the signal. You can use a different label for each

signal or the same label for each signal. This argument is optional.

Enclose the contents of the Numerical format text box in single quotation marks.
For example:

'Foo %15.2f end'

For a whole integer signal value, enter 0 for the precision value. For example:

'Foo1 %15.0f end'

For a line with multiple entries, delimit each entry with a command and enclose the
entire format character vector in single quotation marks. For example:

4 Signals and Parameters

4-26

'Foo2 %15.6f end,Foo3 %15.6f end2'

You can have multiple Numerical format entries, separated by a comma. If you
insert a single entry, that entry applies to each signal (scalar expansion). If you
enter N label entries for N+Ksignals, the first N−1 entries apply to the first N−1
signals. The Nth entry is scalar expanded for the remaining K+1 signals. If you have
two entries and one signal, the software ignores the second label entry and applies
the first entry. You can enter as many format entries as you have signals for the
scope. The format character vector has a maximum length of 100 characters,
including spaces, for each signal.

8 To display grid lines on the scope, select the Grid check box. This parameter is
applicable only for target scopes with scope modes of type Graphical redraw or
Graphical rolling.

9 In the Y-Axis limits box, enter a row vector with two elements. The first element is
the lower limit of the y-axis and the second element is the upper limit. If you enter 0
for both elements, scaling is set to auto. This parameter is applicable only for target
scopes with scope modes of type Graphical redraw or Graphical rolling.

10 In the Number of samples box, enter the number of values to be acquired in a data
package.

• If you select a Scope mode of Graphical redraw, the display redraws the
graph every Number of samples.

• If you select a Scope mode of Numerical, the block updates the output every
Number of samples.

• If you select a Trigger mode other than FreeRun, this parameter can specify
the Number of samples to be acquired before the next trigger event.

11 In the Number of pre/post samples box, enter the number of samples to save or
skip. To save N samples before a trigger event, specify the value −N. To skip N
samples after a trigger event, specify the value N. The default is 0.

12 In the Decimation box, enter a value to indicate when data is collected. The value 1
means that data is collected at each sample time. A value of 2 or greater means that
data is collected at less than every sample time.

13 From the Trigger mode list, select one of the following:

• FreeRun or Software Triggering — No extra parameters.
• Signal Triggering — enter additional parameters, as required:

 Configure Real-Time Target Scope Blocks

4-27

• In the Trigger signal box, enter the index of a signal previously added to the
scope.

This parameter does not apply if the Add signal port to connect a signal
trigger source check box is selected.

• (Alternatively) Click the Add signal port to connect a signal trigger
source check box, then connect an arbitrary trigger signal to the port Trigger
signal.

• In the Trigger level box, enter a value for the signal to cross before
triggering.

• From the Trigger slope list, select one of Either, Rising, or Falling.
• Scope Triggering — enter additional parameters, as required:

• In the Trigger scope number box, enter the scope number of a Scope block.
If you use this trigger mode, add a second Scope block to your Simulink model.

• To trigger one scope on a specific sample of another scope, enter a value in
Sample to trigger on (-1 for end of acquisition). The default value, 0,
indicates that the triggered scope starts on the same sample as the triggering
scope.

The target scope dialog box looks like this figure.

4 Signals and Parameters

4-28

 Configure Real-Time Target Scope Blocks

4-29

14 Click OK.
15 From the File menu, click Save As.

Save the model as ex_slrt_target_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_target_osc')))).

See Also
Scope

More About
• “Simulink Real-Time Scope Usage” on page 4-21
• “Target Scope Usage” on page 4-23
• “Trigger One Scope with Another Scope” on page 9-20

4 Signals and Parameters

4-30

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_target_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_target_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_target_osc')))

Create Target Scopes with Simulink Real-Time Explorer
You can create a target scope on the target computer using Simulink Real-Time
Explorer. These scopes have the full capabilities of the Scope block in Target mode, but
do not persist past the current execution.

Note For information on using target scope blocks, see “Configure Real-Time Target
Scope Blocks” on page 4-25 and “Target Scope Usage” on page 4-23.

This procedure uses the model xpcosc. You must have already completed the following
setup:

1 Built and downloaded the real-time application to the target computer using
Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (Tools > Simulink Real-Time).
3 Connected to the target computer in the Targets pane (on the toolbar).
4 Set property Stop time to inf in the Applications pane (on the toolbar).

To configure a target scope:

1 In the Scopes pane, expand the xpcosc node.
2 To add a target scope, select Target Scopes and then click the Add Scope

button on the toolbar.

The new scope appears under node Target Scopes, for example Scope 1.
3 Select Scope 1 and then click the Properties button on the toolbar.
4 In the Scope Properties workspace, click Signals. You add signals from the

Applications Signals workspace.
5 In the Applications pane, expand the real-time application node and then node

Model Hierarchy.
6 Select the model node and then click the View Signals button on the toolbar.

The Signals workspace opens, showing a table of signals with properties and actions.

 Create Target Scopes with Simulink Real-Time Explorer

4-31

7 In the Signals workspace, to add signal Signal Generator to Scope1, drag signal
Signal Generator to the Scope1 properties workspace.

8 Add signal Integrator1 to Scope 1 in the same way.

The dialog box looks like this figure.

4 Signals and Parameters

4-32

9 To start execution, click the real-time application and then click the Start
button on the toolbar.

 Create Target Scopes with Simulink Real-Time Explorer

4-33

The application starts running. No output appears on the target computer monitor.
10 To start Scope 1, click Scope 1 in the Scopes pane and then click the Start Scope

button on the toolbar.

Output for signals Signal Generator and Integrator1 appears on the target
computer monitor.

11 To stop Scope 1, click Scope 1 in the Scopes pane and then click the Stop Scope
button on the toolbar.

The signals shown on the target computer stop updating while the real-time
application continues running. The target computer monitor displays a message like
this message:

Scope: 1, set to state 'interrupted'
12 To stop execution, click the real-time application and then click the Stop

button on the toolbar.

The real-time application on the target computer stops running, and the target
computer displays messages like these messages:

minimal TET: 0.0000006 at time 0.001250

maximal TET: 0.0000013 at time 75.405500

The target computer screen looks like this figure.

4 Signals and Parameters

4-34

You can create a target scope from the scope types list by clicking Add Scope next to
scope type Target Scopes. You can add or remove signals from a target scope while the
scope is either stopped or running.

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

 Create Target Scopes with Simulink Real-Time Explorer

4-35

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

See Also
SimulinkRealTime.target.viewTargetScreen

More About
• “Create Signal Groups with Simulink Real-Time Explorer” on page 4-58
• “Configure Target Scopes with Simulink Real-Time Explorer” on page 4-51
• “Configure Scope Sampling with Simulink Real-Time Explorer” on page 4-37
• “Trigger Scopes with Simulink Real-Time Explorer” on page 4-41
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

4 Signals and Parameters

4-36

Configure Scope Sampling with Simulink Real-Time Explorer
You can customize sampling for Simulink Real-Time scopes to facilitate data access to
the running model. You can configure sampling whether you added a Scope block to the
model or added the scope at run time.

This procedure uses the model xpcosc. You must have already completed the procedure
in “Create Target Scopes with Simulink Real-Time Explorer” on page 4-31. Target
execution and scopes must be stopped.

1 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
2 In the Scope 1 properties pane, click Sampling.
3 In the Number of Samples box, enter the number of values to be acquired in a data

package, here 250.

If you select a Display mode of Graphical redraw, the display redraws the graph
every Number of Samples.

If you select a Display mode of Numerical, the block updates the output every
Number of Samples.

If you select a Trigger Mode other than FreeRun, this parameter can specify the
number of samples to be acquired before the next trigger event.

4 In the Decimation box, enter 10 to indicate that data must be collected at every
10th sample time. The default is 1, to collect data at every sample time.

5 In the Number of pre/post samples box, enter the number of samples to save or
skip. To save N samples before a trigger event, specify the value −N. To skip N
samples after a trigger event, specify the value N. The default is 0.

The dialog box looks like this figure.

 Configure Scope Sampling with Simulink Real-Time Explorer

4-37

6 Start execution (on the Applications toolbar).
7 Start Scope 1 (on the toolbar).

Output for signals Signal Generator and Integrator1 appears on the target
computer monitor.

4 Signals and Parameters

4-38

8 Stop Scope 1 (on the toolbar).
9 Stop execution (on the Applications toolbar).

 Configure Scope Sampling with Simulink Real-Time Explorer

4-39

See Also

More About
• “Trigger Scopes with Simulink Real-Time Explorer” on page 4-41

4 Signals and Parameters

4-40

Trigger Scopes with Simulink Real-Time Explorer
To facilitate your interaction with the running model, you can configure scope triggering
for Simulink Real-Time scopes. You can configure triggering whether you created the
scope by adding a Scope block to the model or by adding the scope at run time.

The following procedures use the model xpcosc. You must have already completed the
procedure in “Create Target Scopes with Simulink Real-Time Explorer” on page 4-31.
Target execution and scopes must be stopped.

In this section...
“Freerun Triggering” on page 4-41
“Software Triggering” on page 4-41
“Signal Triggering” on page 4-43
“Scope Triggering” on page 4-47

Freerun Triggering
In Trigger Mode Freerun, the scope triggers automatically when it is started. It
displays data until it is stopped. By default, Trigger Mode is set to Freerun.

1 Start execution (on the Applications toolbar).
2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
3 In the Scope 1 pane, click Triggering.
4 Select Trigger Mode Freerun.
5 Start and stop Scope 1 (and on the toolbar).

Signal data is displayed on the target computer monitor when the scope starts and
stops when the scope stops.

6 Stop execution (on the Applications toolbar).

Software Triggering
In Trigger Mode Software, the scope triggers when you select Scope 1 and then click
the Trigger button on the toolbar.

 Trigger Scopes with Simulink Real-Time Explorer

4-41

1 Start execution (on the Applications toolbar).
2 Select Trigger Mode Software.
3 Start Scope 1 (on the toolbar).

The Trigger button is enabled on the toolbar.
4 Click the Trigger button on the Scopes toolbar.

The current signal data is displayed on the target computer monitor when you click
the button.

5 Stop Scope 1 (on the toolbar).

The dialog box looks like this figure.

4 Signals and Parameters

4-42

The target monitor looks like this figure.

6 Stop execution (on the Applications toolbar).

Signal Triggering

In Trigger Mode Signal, the scope triggers when a signal rises or falls through a
specified level.

 Trigger Scopes with Simulink Real-Time Explorer

4-43

1 Start execution (on the Applications toolbar).
2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
3 In the Scope 1 pane, click Triggering.
4 Select Trigger Mode Signal.

Settings Trigger Signal, Trigger Slope, and Trigger Level appear.
5 Type the number displayed on the target computer screen for Signal Generator

(here, 5) in the Trigger Signal text box.
6 Set Trigger Slope to Rising.
7 Leave Trigger Level as 0, indicating that the signal crosses 0 before Scope 1

triggers.

4 Signals and Parameters

4-44

8 Start Scope 1 (on the toolbar).

Signal data is displayed on the target computer monitor, with the rising pulse of
Signal Generator just beyond the left side.

 Trigger Scopes with Simulink Real-Time Explorer

4-45

9 Stop Scope 1 (on the toolbar).
10 Stop execution (on the Applications toolbar).

4 Signals and Parameters

4-46

Scope Triggering

In Trigger Mode Scope, the scope triggers when another scope triggers. In this
example, Scope 2 triggers when signal-triggered Scope 1 triggers.

1 Start execution (on the Applications toolbar).
2 Add scope Scope 2 (on the Scopes toolbar).
3 Open the Signals pane (on the Applications toolbar).
4 Add signal Integrator to Scope 2 in the Signals pane.
5 In the Scope 2 pane, click Triggering.
6 Select Trigger Mode Scope.

Settings Trigger scope and Trigger scope sample appear.
7 Set Trigger scope to 1. Press Enter. Scope 2 then triggers when Scope 1 triggers.
8 Leave Trigger scope sample set to 0. Scope 2 triggers on the same sample as

Scope 1.

 Trigger Scopes with Simulink Real-Time Explorer

4-47

4 Signals and Parameters

4-48

9 Explicitly start both Scope 1 and Scope 2 (on the toolbar).

Scope 1 and Scope 2 display signal data on the target computer monitor.

10 Explicitly stop both Scope 1 and Scope 2 (on the toolbar).
11 Stop execution (on the Applications toolbar).

 Trigger Scopes with Simulink Real-Time Explorer

4-49

See Also

More About
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

4 Signals and Parameters

4-50

Configure Target Scopes with Simulink Real-Time Explorer
To facilitate your view of the signal data, you can configure the target scope display. You
can configure the display whether you added a Scope block to the model or added the
scope at run time.

This procedure uses the model xpcosc. You must have already completed the procedure
in “Create Target Scopes with Simulink Real-Time Explorer” on page 4-31. Target
execution and scopes must be stopped.

1 Start execution (on the Applications toolbar).
2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).
3 In the Scope 1 pane, click Display.
4 Select Display mode Redraw and then click in the Y-Limits box.

This value is the default. It causes the scope display to redraw when it has acquired
as many samples as specified in Number of Samples.

5 Start Scope 1 (on the toolbar).

Signal data is displayed on the target computer monitor, appearing to move to the
left.

6 Enter [0,10] in the Y-Limits box and then press Enter. The default setting is
[0,0], which automatically scales the output according to the signal values.

The display changes to show only values at and above the zero line.
7 Clear the Grid (On/Off) check box. By default, the box is selected.

 Configure Target Scopes with Simulink Real-Time Explorer

4-51

The target computer monitor looks like this figure.

4 Signals and Parameters

4-52

8 Select Display mode Numerical and then click the Y-Limits box.

The grid and axes disappear. The target computer monitor displays the signals, color
coded, in the default format of %15.6f (a floating-point format without a label).

9 Select Display mode Rolling and then click in the Y-Limits box.

The display changes to a display that continuously moves a window along the signal
log. New data enters the display from the right and then moves toward the left.

 Configure Target Scopes with Simulink Real-Time Explorer

4-53

10 Stop Scope 1 (on the toolbar).
11 Stop execution (on the Applications toolbar).

See Also
SimulinkRealTime.target.viewTargetScreen

4 Signals and Parameters

4-54

Configure Target Scopes with MATLAB Language
Creating a scope object allows you to select and view signals using Simulink Real-Time
functions instead of the Simulink Real-Time user interface.

This procedure uses the Simulink model xpcosc. To do this procedure, you must have
already built the real-time application forxpcosc and downloaded it to the default target
computer. It describes how to trace signals with target scopes.

1 Start running your real-time application. Type:

tg = slrt;
start(tg)

2 To get a list of signals, type:

tg.ShowSignals = 'on'

The Command Window displays a list of the target object properties for the available
signals. For example, the signals for the model xpcosc are:

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 Scopes = 1
 NumSignals = 7
 ShowSignals = on
 Signals =
 INDEX VALUE Type BLOCK NAME LABEL
 0 0.000000 DOUBLE Gain
 1 0.000000 DOUBLE Gain1
 2 0.000000 DOUBLE Gain2
 3 0.000000 DOUBLE Integrator
 4 0.000000 DOUBLE Integrator1
 5 0.000000 DOUBLE Signal Generator
 6 0.000000 DOUBLE Sum
.
.
.

3 Create a scope to be displayed on the target computer. For example, to create a scope
with an identifier of 1 and a scope object name of sc1, type:

 Configure Target Scopes with MATLAB Language

4-55

sc1 = addscope(tg, 'target', 1)

Simulink Real-Time Scope
 Application = xpcosc
 ScopeId = 1
 Status = Interrupted
 Type = Target
 NumSamples = 250
 NumPrePostSamples = 0
 Decimation = 1
 TriggerMode = FreeRun
 TriggerSignal = -1
 TriggerLevel = 0.000000
 TriggerSlope = Either
 TriggerScope = 1
 TriggerSample = 0
 DisplayMode = Redraw (Graphical)
 YLimit = Auto
 Grid = on
 Signals = no Signals defined

4 Add signals to the scope object. For example, to add Integrator1 and Signal
Generator, type:

addsignal(sc1,[4,5])

Simulink Real-Time Scope
 Application = xpcosc
 ScopeId = 1
 Status = Interrupted
 Type = Target
.
.
.
 Grid = on
 Signals = 4 : Integrator1
 5 : Signal Generator

The target computer displays the following messages:
Scope: 1, signal 4 added

Scope: 1, signal 5 added

After you add signals to a scope object, the signal values are not shown on the target
display until you start the scope.

4 Signals and Parameters

4-56

5 Start the scope. For example, to start the scope sc1, type:

start(sc1)

The target display plots the signals after collecting each data package. During this
time, you can observe the behavior of the signals while the scope is running.

6 Stop the scope. Type:

stop(sc1)

The signals shown on the target computer stop updating while the real-time
application continues running. The target computer displays the following message:

Scope: 1, set to state 'interrupted'
7 Stop the real-time application. In the Command Window, type:

stop(tg)

See Also

More About
• “Monitor Signals with MATLAB Language” on page 4-9

 See Also

4-57

Create Signal Groups with Simulink Real-Time Explorer
When testing a complex model with many signals, you frequently must select signals for
tracing or monitoring from multiple parts and levels of the model hierarchy. You can
make this task easier by using Simulink Real-Time Explorer to create a signal group and
save it to disk.

This procedure uses the model xpcosc. You must have already completed the following
setup:

1 Built and downloaded the real-time application to the target computer using
Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (Tools > Simulink Real-Time).
3 Connected to the target computer in the Targets pane (on the toolbar).

To create a signal group:

1 In the Applications pane, expand the real-time application node and right-click
node Groupings.

2 Click New Signal Group.

The Add New Signal Group Item dialog box appears.
3 In the Add New Signal Group Item dialog box, enter a name in the Name text box,

for example signalgroup1.sig. In the Location text box, enter a folder for the
group file.

4 Click OK.

A new signal group appears, along with its Signal Group workspace.
5 In the Applications pane, expand the real-time application node and then expand

node Model Hierarchy.
6 Select the model node and then click the View Signals button on the toolbar.

The Signals workspace opens, showing a table of signals with properties and actions.
7 In the Signals workspace, to add signal Signal Generator to signalgroup1.sig,

drag signal Signal Generator to the signalgroup1.sig properties workspace.
8 Add signal Integrator1 to signalgroup1.sig in the same way.

4 Signals and Parameters

4-58

9
Press Enter, and then click the Save button on the toolbar.

When you are monitoring a signal group, you can change the output format of the
group by selecting one of the options in the Format column. See“Signal Group
Monitoring Formats” on page 4-16.

Signals are defined within a particular real-time application. To open a signal group from
the File > Open > Group menu, you must first select an application.

 Create Signal Groups with Simulink Real-Time Explorer

4-59

To remove signals from the signal group, select the signal items in the group list and
click Delete Signals.

To remove the signal group, navigate to the signal group under Groupings > Signals,
right-click the signal group, and click Remove.

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

See Also

More About
• “Monitor Signals with Simulink Real-Time Explorer” on page 4-6
• “Create Target Scopes with Simulink Real-Time Explorer” on page 4-31
• “Create Host Scopes with Simulink Real-Time Explorer” on page 4-66
• “Create File Scopes with Simulink Real-Time Explorer” on page 4-98
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

4 Signals and Parameters

4-60

Host Scope Usage
• Simulink Real-Time supports as many host scopes as the target computer resources

can support. Each host scope can contain as many signals as the target computer
resources can support.

• To clarify your model functionality, consider adding signal labels. If you define signal
labels, the host scope displays the labels, highlighted with pointed brackets, instead of
the signal names. If you do not define signal labels, the host scope displays the short
name of the signal.

• Use host scopes to log signal data triggered by an event while your real-time
application is running. The host scope acquires the first N samples into a buffer. You
can retrieve this buffer into the scope object property sc.Data. The scope then stops.
Restart the scope manually.

The number of samples N to log after triggering an event is equal to the value that
you entered in the Number of samples parameter.

Select the type of trigger event in the Scope block dialog box by setting Trigger
Mode to Signal Triggering, Software Triggering, or Scope Triggering.

• The target computer transfers data to the development computer for display in the
host scope viewer. Because of this latency, the host scope display lags a target scope
display during real-time application execution.

See Also

More About
• “Configure Real-Time Host Scope Blocks” on page 4-62
• “Create Host Scopes with Simulink Real-Time Explorer” on page 4-66
• “Simulink Real-Time Scope Usage” on page 4-21
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

 Host Scope Usage

4-61

Configure Real-Time Host Scope Blocks
Simulink Real-Time includes a specialized real-time Scope block that you can configure
to display signal and time data on the development computer monitor. Add a Scope block
to the model, select Scope type Host, and configure the other parameters as described
in the following procedure.

• Do not confuse Simulink Real-Time Scope blocks with standard Simulink Scope
blocks.

• To clarify your model functionality, consider adding signal labels. If you define signal
labels, the host scope displays the labels, highlighted with pointed brackets, instead of
the signal names. If you do not define signal labels, the host scope displays the short
name of the signal.

This procedure uses the example model ex_slrt_rt_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))).

1 In the Command Window, open ex_slrt_rt_osc.
2 Double-click the block labeled Scope.

The Scope block dialog box opens. By default, the target scope dialog box is
displayed.

3 In the Scope number box, a unique number is displayed that identifies the scope.
This number is incremented each time that you add a Simulink Real-Time scope.

This number identifies the Simulink Real-Time Scope block and the scope screen on
the development or target computers.

4 From the Scope type list, select Host. The updated dialog box is displayed.
5 To start the scope automatically when the real-time application executes, select the

Start scope when application starts check box. You can then open a host scope
viewer from Simulink Real-Time Explorer.

In Stand Alone mode, this setting is mandatory because the development computer
is not available to issue a command to start scopes.

6 In the Number of samples box, enter the number of values to be acquired in a data
package.

4 Signals and Parameters

4-62

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))

7 In the Number of pre/post samples box, enter the number of samples to save or
skip. To save N samples before a trigger event, specify the value −N. To skip N
samples after a trigger event, specify the value N. The default is 0.

8 In the Decimation box, enter a value to indicate when data is collected. The value 1
means that data is collected at each sample time. A value of 2 or greater means that
data is collected at less than every sample time.

9 From the Trigger mode list, select one of the following:

• FreeRun or Software Triggering — No extra parameters.
• Signal Triggering — enter additional parameters, as required:

• In the Trigger signal box, enter the index of a signal previously added to the
scope.

This parameter does not apply if the Add signal port to connect a signal
trigger source check box is selected.

• (Alternatively) Click the Add signal port to connect a signal trigger
source check box, then connect an arbitrary trigger signal to the port Trigger
signal.

• In the Trigger level box, enter a value for the signal to cross before
triggering.

• From the Trigger slope list, select one of Either, Rising, or Falling.
• Scope Triggering — enter additional parameters, as required:

• In the Trigger scope number box, enter the scope number of a Scope block.
If you use this trigger mode, add a second Scope block to your Simulink model.

• To trigger one scope on a specific sample of another scope, enter a value in
Sample to trigger on (-1 for end of acquisition). The default value, 0,
indicates that the triggered scope starts on the same sample as the triggering
scope.

The host scope dialog box looks like this figure.

 Configure Real-Time Host Scope Blocks

4-63

10 Click OK.
11 From the File menu, click Save As.

Save the model as ex_slrt_host_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_host_osc')))).

4 Signals and Parameters

4-64

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_host_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_host_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_host_osc')))

See Also
Scope

More About
• “Simulink Real-Time Scope Usage” on page 4-21
• “Host Scope Usage” on page 4-61
• “Create Host Scopes with Simulink Real-Time Explorer” on page 4-66
• “Trigger One Scope with Another Scope” on page 9-20

 See Also

4-65

Create Host Scopes with Simulink Real-Time Explorer
You can create a host scope on the target computer with Simulink Real-Time Explorer.
These scopes have the full capabilities of the Scope block in Host mode, but do not
persist past the current execution.

For information on using host scope blocks, see “Configure Real-Time Host Scope Blocks”
on page 4-62 and “Host Scope Usage” on page 4-61.

This procedure uses the model ex_slrt_sf_car (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_sf_car')))).

Set Up Model
Before creating a host scope, perform these steps:

1 Build and download ex_slrt_sf_car to the target computer with Simulink (on
the toolbar).

2 Run Simulink Real-Time Explorer (Tools > Simulink Real-Time).
3 Connect to the target computer that is in the Targets pane (on the toolbar).
4 Set property Stop time to inf in the Applications pane (on the toolbar).

Configure Host Scope
1 In the Scopes pane, expand the ex_slrt_sf_car node.
2 To add a host scope, select Host Scopes, and then click the Add Scope

button on the toolbar.
3 Expand Scope 1, and then click the Properties button on the toolbar.

To display the host scope signals, in the Scope Properties pane, click Signals.
4 In the Applications pane, expand the real-time application node, and then the node

Model Hierarchy.
5 Double-click the ex_slrt_sf_car > transmission > Torque Converter node.

The Torque Converter signal list opens.

4 Signals and Parameters

4-66

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_sf_car')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_sf_car')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_sf_car')))

6 To add signal turbine to Scope1, drag signal turbine from the Torque
Converter signal list to the Scope1 properties workspace.

To make the Scope1 properties visible below the Torque Converter signal list,
drag the Torque Converter tab down until the icon appears.

7 Double-click transmission ratio and add signal Product to Scope 1 in the same
way as described in step 6.

 Create Host Scopes with Simulink Real-Time Explorer

4-67

View Host Scope
1 Select Scope 1, and then click the View Scope button on the toolbar.

The host scope viewer opens as a separate tab. The signals that you add to the scope
appear at the top right of the viewer. The labels appear in pointed brackets because
these signals are labeled signals.

2 To start Scope 1, click Scope 1 in the Scopes pane, and then click the Start Scope
button on the toolbar.

3 To start execution, click the real-time application, and then click the Start
button on the toolbar.

The real-time application starts running. The host scope on the target computer
transfers data to the host scope on the development computer.

4 Signals and Parameters

4-68

4 To stop Scope 1, click Scope 1 in the Scopes pane, and then click the Stop Scope
button on the toolbar.

5 To stop execution, click the real-time application, and then click the Stop
button on the toolbar.

 Create Host Scopes with Simulink Real-Time Explorer

4-69

See Also
Scope

More About
• “Host Scope Usage” on page 4-61
• “Configure Real-Time Host Scope Blocks” on page 4-62
• “Configure the Host Scope Viewer” on page 4-71
• “Create Signal Groups with Simulink Real-Time Explorer” on page 4-58
• “Configure Scope Sampling with Simulink Real-Time Explorer” on page 4-37
• “Trigger Scopes with Simulink Real-Time Explorer” on page 4-41
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

4 Signals and Parameters

4-70

Configure the Host Scope Viewer
You can customize the viewer for each host scope to facilitate your interaction with the
running model.

This procedure uses the model xpcosc. You must have already completed the procedure
in “Create Host Scopes with Simulink Real-Time Explorer” on page 4-66. Target
execution and scopes must be stopped.

1 In the Signals workspace, to add signal Integrator to host scope Scope1, drag
signal Integrator to the Host Scope Viewer display.

2 Start execution (on the Applications toolbar).
3 To start Scope 1, click the Start button on the Host Scope Viewer toolbar.
4 To trigger Scope 1, click the Trigger button on the Host Scope Viewer toolbar.

To trigger a capture interactively using the Trigger button , first set the scope
Trigger Mode to Software or Scope.

5 In the Simulink Real-Time Host Scope Viewer, right-click anywhere in the axis area
of the viewer and then click Edit.

The Host Scope Viewer display parameter buttons become enabled on the toolbar.
6 Adjust the Host Scope Viewer display using:

• Auto Scale — To scale the display to accommodate the top and bottom of the
Y-axis.

•
Axes Scroll — To move the content up and down and right and left relative
to the axes. The axes scroll as required.

• Axes Zoom — To stretch and compress the X-axis and Y-axis.
•

Zoom In — To zoom in on the current center of the display.
•

Zoom Out — To zoom out from the current center of the display.
• Zoom Box — To select an area of interest in the display. When you release

the mouse button, the display zooms in upon the selected area.

 Configure the Host Scope Viewer

4-71

•
Data Cursor — To display data values using a set of cross-hairs in the
display.

Data is displayed as the pair x-value,y-value, indicating the value at that
point on the display. You can drag the center of the cross hairs and observe the
value at each point.

•
Legends — To toggle display of the signal names.

•
Y-Axes Scale Display — To show the scale of the Y-axis.

7 To stop Scope 1, click the Stop button on the Host Scope Viewer toolbar.
8 Stop execution (on the Applications toolbar).

See Also

More About
• “Trigger Scopes with Simulink Real-Time Explorer” on page 4-41

4 Signals and Parameters

4-72

Trace Signals with Simulink External Mode
You can use Simulink external mode to establish a communication channel between your
Simulink block diagram and your real-time application. The block diagram becomes a
user interface to your real-time application. Simulink scopes can display signal data from
the real-time application, including from models referenced inside a top model. You can
control which signals to upload through the External Signal & Triggering dialog box (see
“Select Signals to Upload” (Simulink Coder) and “Control External Mode Operations”
(Simulink Coder)).

Note Do not use Simulink external mode while Simulink Real-Time Explorer is running.
Use only one interface or the other.

This procedure uses the model xpcosc. xpcosc contains a Simulink Scope block.

1 In the Command Window, type xpcosc.
2 In the Simulink Editor, from the Code menu, select External Mode Control

Panel.
3 In the External Mode Control Panel dialog box, click the Signal & Triggering

button.
4 In the External Signal & Triggering dialog box, set the Source parameter to

manual.
5 Set the Mode parameter to normal. In this mode, the scope acquires data

continuously.
6 Select the Arm when connecting to target check box.
7 In the Delay box, enter 0.
8 In the Duration box, enter the number of samples for which external mode is to log

data, for example 1000.

The External Signal & Triggering dialog box looks like this figure.

 Trace Signals with Simulink External Mode

4-73

9 Click Apply, and then Close.
10 In the External Mode Control Panel dialog box, click OK.
11 In the Simulink toolbar, increase the simulation stop time to, for example, 50.
12 From the File menu, select Save As and enter a file name. For example, enter

ex_slrt_ext_osc, and then click OK.
13 In the Simulink Editor, click Simulation > Mode > External. A check mark

appears next to the menu item External, indicating that Simulink external mode is
activated.

14 If a scope window is not displayed for the Scope block, double-click the Scope block.
15 Build and download the model to the target computer.
16

On the toolbar, click the Connect To Target button .

4 Signals and Parameters

4-74

The current Simulink model parameters are downloaded from the development
computer to the real-time application.

17
To start the simulation, click the Run button on the toolbar.

The real-time application begins running on the target computer. The Scope window
displays plotted data.

18
To stop the simulation, click the Stop button on the toolbar.

See Also

 See Also

4-75

Inspect Simulink® Real-Time™ Data with Simulation Data
Inspector

This example shows how to use Simulation Data Inspector (SDI) to log signal and task
execution time (TET) data from the real-time application. You can select signals for
display from models referenced at arbitrary levels within a model hierarchy.

• Simulation Data Inspector (SDI) and the third-party calibration tools (Vector
CANape® and ETAS® Inca) are mutually exclusive. If you use SDI to view signal
data, you cannot use the calibration tools. If you use the calibration tools, you cannot
use SDI to view signal data.

• The real-time application sometimes generates data faster than the kernel can
transmit it to the development computer, causing gaps in the output. If gaps occur,
consider selecting buffered logging. You can also reduce the number of signals being
inspected or increase the sample time.

• Simulink® Real-Time™ records signals inside enabled subsystems even when they
are not running. In while and for iterator subsystems, Simulink® Real-Time™
records only the last data point.

This example uses the model xpcosc (matlab:open_system(fullfile(matlabroot,
'toolbox', 'rtw', 'targets', 'xpc', 'xpcdemos', 'xpcosc'))).

In this example, you control the model from Simulink® Real-Time™ Explorer. You can
also access Simulation Data Inspector by using external mode.

SDI Setup

Make sure that you have started the target computer and established communication
between the development and target computers.

1 Open xpcosc.
2 On the toolbar, increase the simulation stop time to, for example, 10 seconds.
3 To log signals with SDI, in the model, select and right-click the signals Signal

Generator and Integrator1. Select Log Selected Signals. A faint Simulation
Data Inspector icon appears next to each signal.

4 To log task execution time (TET), open the Configuration Parameters dialog box. In
the Simulink Real-Time Options tab, select Monitor Task Execution Time.

4 Signals and Parameters

4-76

matlab:open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'))
matlab:open_system(fullfile(matlabroot,'toolbox','rtw','targets','xpc','xpcdemos','xpcosc'))

5 Build the model and download it to the target computer.

Inspect Signal Data

1 Click Tools > Simulink Real-Time.
2 In Simulink Real-Time Explorer, start the real-time application. The Simulation

Data Inspector button glows in Simulink Editor, indicating that Simulation Data
Inspector has data available for viewing.

3 Click the Simulation Data Inspector button.
4 In Simulation Data Inspector, select the signals Integrator1:1 and

SignalGenerator:1. Simulation Data Inspector displays plotted signal data.

 Inspect Simulink® Real-Time™ Data with Simulation Data Inspector

4-77

5. Stop the real-time application.

6. After the simulation, use the toolbar buttons to explore the data. For example, to view
the simulation between seconds 0.02 and 0.04, in Simulation Data Inspector, click the
Zoom in Time button. Drag the cursor over the range from 0.02 to 0.04.

4 Signals and Parameters

4-78

Inspect TET Data

1 To view the TET data, clear Integrator1:1 and SignalGenerator:1.
2 Select TET.BaseRate.minTET, TET.BaseRate.maxTET, and TET.BaseRate.TET.

 Inspect Simulink® Real-Time™ Data with Simulation Data Inspector

4-79

4 Signals and Parameters

4-80

3. To save the Simulation Data Inspector session as a .mat file, click Save.

See Also

More About
• “Minimize Data Loss with Simulation Data Inspector Buffered Mode” on page 4-82
• “Simulation Data Inspector in Your Workflow” (Simulink)

 See Also

4-81

Minimize Data Loss with Simulation Data Inspector Buffered
Mode

You can use Simulation Data Inspector to examine signal data from a real-time
application in either immediate mode or in buffered mode. In immediate mode, you view
the output in real time as the application produces it. The application can produce more
data than the target computer can transmit in real time to the development computer.
Data accumulates in the network buffer, and, if the buffer fills up, the kernel drops data
points.

To avoid this issue, you can use buffered logging mode. In buffered mode, the kernel
stores data for the buffered signals in a file on the target computer. At the end of
execution, it transmits it to the development computer. You can then view the most
important signals immediately and view the buffered signals afterward.

Set Up Model
1 Open xpcosc.
2 Right-click the Mux output signal and select Log Selected Signals.
3 Right-click the Sum output signal and select Log Selected Signals.
4 Right-click the Sum output badge () and select Properties.

Select Logging Mode to Buffered.

4 Signals and Parameters

4-82

Set Up Simulation Data Inspector

1
Open Simulation Data Inspector ().

2 Click the Layout button ().
3 Select two horizontal displays.

View Simulation Data

1 Build and download xpcosc.
2 Start real-time execution.
3

When the Simulation Data Inspector button changes to , click in the top display
and select the Sum output signal.

Click in the bottom display and select the Mux output signals.

 Minimize Data Loss with Simulation Data Inspector Buffered Mode

4-83

4 Stop real-time execution.

When the Sum output appears, click Fit to View ().

4 Signals and Parameters

4-84

5 To zoom in on a time segment of interest, for example 10.0–10.1 s, click Zoom in

Time () and use the mouse and mouse wheel.

 Minimize Data Loss with Simulation Data Inspector Buffered Mode

4-85

6 To save the Simulation Data Inspector session as a .mat file, click Save.

See Also

More About
• “Inspect Simulink® Real-Time™ Data with Simulation Data Inspector” on page 4-

76
• “Simulation Data Inspector in Your Workflow” (Simulink)

4 Signals and Parameters

4-86

External Mode Usage
• When setting up signal triggering (Source set to signal), explicitly specify the element

number of the signal in the Trigger signal:Element box. If the signal is a scalar,
enter a value of 1. If the signal is a wide signal, enter a value from 1 to 10. When
uploading Simulink Real-Time signals to Simulink scopes, do not enter Last or Any
in this box.

• The Direction:Holdoff value does not affect the Simulink Real-Time signal
uploading feature.

 External Mode Usage

4-87

Signal Logging Basics
Signal logging acquires signal data during a real-time run and stores it on the target
computer. After you stop the real-time application, you transfer the data from target
computer to development computer for analysis. You can plot and analyze the data, and
later save it to a disk on the development computer.

Simulink Real-Time signal logging samples at the base sample time. If you have a model
with multiple sample rates, add Simulink Real-Time scopes to the model to sample
signals at the required sample rates.

• The Simulink Real-Time software does not support logging data with decimation.
• Simulink Real-Time Explorer works with multidimensional signals in column-major

format.
• Some signals are not observable.

You can log signals using the following methods:

• Outports in the model
• File scope blocks in the model
• File scopes created using Simulink Real-Time Explorer
• File scopes created using MATLAB language

See Also

More About
• “Configure File Scopes with Simulink Real-Time Explorer” on page 4-102
• “Log Signal Data with Outport Blocks and Simulink Real-Time Explorer” on page 4-

110
• “Log Signal Data with Outport Block and MATLAB Language” on page 4-116
• “Signals Not Accessible by Name” on page 4-183
• “Simulink Real-Time Scope Usage” on page 4-21
• “Target Scope Usage” on page 4-23
• “Host Scope Usage” on page 4-61

4 Signals and Parameters

4-88

• “File Scope Usage” on page 4-90
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

 See Also

4-89

File Scope Usage
• Simulink Real-Time supports eight file scopes. Each file scope can contain as many

signals as the target computer resources can support.
• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

• If you enter just the file name, the file appears in folder C:\. To put the file in a
folder, create the folder separately using the target computer command line or the
SimulinkRealTime.fileSystem.mkdir command.

• You can configure the scope to generate multiple, dynamically named files in one
session.

• Before starting the scope, copy previously acquired data to the development computer.
When the file scope starts, the software overwrites previously acquired data in files of
the specified name or name pattern. A partially overwritten file or a file that is
opened but left unwritten loses its original contents.

• You cannot read a file that was written during real-time execution until execution has
completed.

• After real-time execution, the file scope software generates a signal data file on the
target computer, even if it is running in Stand Alone mode. To access the contents of
the signal data file that a file scope creates, use the
SimulinkRealTime.fileSystem object from a development computer Command
Window. To view or examine the signal data, use the
SimulinkRealTime.utils.getFileScopeData utility and the plot function.
Saving signal data to files lets you recover signal data from a previous run in the
event of system failure.

• The signal data file can quickly increase in size. To gauge the growth rate for the file,
examine the file size between runs. If the signal data file grows beyond the available
space on the disk, the signal data is corrupted.

4 Signals and Parameters

4-90

• The file scope acquires data and writes it to the file named in the FileName
parameter. The scope writes data samples into a memory buffer of size given by the
Number of Samples parameter. It copies data from the memory buffer into the file
in blocks of size given by the WriteSize parameter.

The Number of samples parameter works with the autorestart setting.

• Autorestart is on — When the scope triggers, the scope starts collecting data into a
memory buffer. A background task examines the buffer and writes data to the disk
continuously, appending new data to the end of the file. When the scope reaches
the number of samples that you specified, it starts collecting data again,
overwriting the memory buffer. If the background task cannot keep pace with data
collection, data can be lost.

• Autorestart is off — When the scope triggers, the scope starts collecting data into a
memory buffer. It stops when it has collected the number of samples that you
specified. A background task examines the buffer and writes data to the disk
continuously, appending the new data to the end of the file.

• When real-time execution stops without an error, both the Lazy and Commit settings
of the Mode box have the same result. Both settings cause the model to open a file,
write signal data to the file, and close that file at the end of the session. The
differences are in when the software updates the FAT entry for the file.

• In Commit mode, the FAT entry and the actual file size are updated during each
file write operation.

• In Lazy mode, the FAT entry and the actual file size are updated only when the
file is closed and not during each file write operation.

Lazy mode is faster than Commit mode. However, if the target computer enters an
error state, the system can stop responding before the file is closed. In Lazy mode, the
actual file size can be lost, even though the file was written. You can lose an amount
of data equivalent to the setting of the WriteSize parameter.

• Select the type of trigger event in the Scope block dialog box by setting Trigger
Mode to Signal Triggering, Software Triggering, or Scope Triggering.

The number of samples N to log after triggering an event is equal to the value that
you entered in the Number of Samples parameter.

 File Scope Usage

4-91

See Also
File System | SimulinkRealTime.fileSystem.mkdir |
SimulinkRealTime.utils.getFileScopeData

More About
• “Configure Real-Time File Scope Blocks” on page 4-93
• “Create File Scopes with Simulink Real-Time Explorer” on page 4-98
• “Log Signal Data into Multiple Files” on page 4-106
• “Simulink Real-Time Scope Usage” on page 4-21
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178
• “Using SimulinkRealTime.fileSystem Objects” on page 10-4

4 Signals and Parameters

4-92

Configure Real-Time File Scope Blocks
Simulink Real-Time includes a specialized Scope block that you can configure to save
signal and time data to a file in the target computer file system. Add a Scope block to the
model, select Scope type File, and then configure the other parameters as described in
the following procedure.

Do not confuse Simulink Real-Time Scope blocks with standard Simulink Scope blocks.

This procedure uses the example model ex_slrt_rt_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))).

1 In the Command Window, open ex_slrt_rt_osc.
2 In the Simulink Editor, double-click the block labeled Scope.

The Scope block dialog box opens. By default, the target scope dialog box is
displayed.

3 In the Scope number box, a unique number is displayed that identifies the scope.
This number is incremented each time you add a Simulink Real-Time scope.

This number identifies the Simulink Real-Time Scope block and the scope screen on
the development or target computer.

4 From the Scope type list, select File. The updated dialog box opens.
5 Caution Before starting the scope, copy previously acquired data to the development

computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

To start the scope automatically when the real-time application executes, select the
Start scope when application starts check box.

In Stand Alone mode, this setting is mandatory because the development computer
is not available to issue a command to start scopes.

6 In the Number of samples box, enter the number of values to be acquired in a data
package.

The Number of samples parameter works with the autorestart setting.

 Configure Real-Time File Scope Blocks

4-93

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))

• Autorestart is on — When the scope triggers, the scope starts collecting data into
a memory buffer. A background task examines the buffer and writes data to the
disk continuously, appending new data to the end of the file. When the scope
reaches the number of samples that you specified, it starts collecting data again,
overwriting the memory buffer. If the background task cannot keep pace with
data collection, data can be lost.

• Autorestart is off — When the scope triggers, the scope starts collecting data into
a memory buffer. It stops when it has collected the number of samples that you
specified. A background task examines the buffer and writes data to the disk
continuously, appending the new data to the end of the file.

7 In the Number of pre/post samples box, enter the number of samples to save or
skip. To save N samples before a trigger event, specify the value −N. To skip N
samples after a trigger event, specify the value N. The default is 0.

8 In the Decimation box, enter a value to indicate how often data is collected, in units
of sample time. The value 1 indicates that data is collected at each sample time.
Values of 2 or more indicates that data is collected at less than every sample time.

9 From the Trigger mode list, select one of the following:

From the Trigger mode list, select one of the following:

• FreeRun or Software Triggering — No extra parameters.
• Signal Triggering — enter additional parameters, as required:

• In the Trigger signal box, enter the index of a signal previously added to the
scope.

This parameter does not apply if the Add signal port to connect a signal
trigger source check box is selected.

• (Alternatively) Click the Add signal port to connect a signal trigger
source check box, then connect an arbitrary trigger signal to the port Trigger
signal.

• In the Trigger level box, enter a value for the signal to cross before
triggering.

• From the Trigger slope list, select one of Either, Rising, or Falling.
• Scope Triggering — enter additional parameters, as required:

• In the Trigger scope number box, enter the scope number of a Scope block.
If you use this trigger mode, add a second Scope block to your Simulink model.

4 Signals and Parameters

4-94

• To trigger one scope on a specific sample of another scope, enter a value in
Sample to trigger on (-1 for end of acquisition). The default value of 0
causes the triggering scope and the triggered scope to start simultaneously.

10 In the Filename box, enter a name for the file to contain the signal data.

By default, the target computer writes the signal data to C:\data.dat.

A fully qualified file name can have a maximum of 260 characters: The file part can
have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

11 From the Mode list, select either Lazy or Commit.

With the Commit mode, each file write operation simultaneously updates the FAT
entry for the file. The file system maintains the actual file size after each write. With
the Lazy mode, the FAT entry is updated only when the file is closed.

If your system stops responding, you lose WriteSize bytes of data.
12 In the WriteSize box, enter the block size, in bytes, of the data chunks. This

parameter specifies that a memory buffer of length Number of samples is written to
the file in chunks of size WriteSize. By default, this parameter is 512 bytes. Using a
block size that is the same as the disk sector size improves performance.

If your system stops responding, you lose WriteSize bytes of data.
13 To have the file scope collect data up to Number of samples and then start over

again reading new data, select the AutoRestart check box.

To have the file scope collect data up to Number of samples and then stop, clear
the AutoRestart check box.

If the named signal data file exists when the file scope starts, the Simulink Real-
Time software overwrites the old data with the new signal data.

Setting this check box enables the following parameters: Dynamic file name
enabled and Max file size in bytes (multiple of WriteSize).

The file scope dialog box looks like this figure.

 Configure Real-Time File Scope Blocks

4-95

4 Signals and Parameters

4-96

14 Click OK.
15 From the File menu, click Save As.

Save the model as ex_slrt_file_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_file_osc')))).

See Also
Scope

More About
• “Simulink Real-Time Scope Usage” on page 4-21
• “File Scope Usage” on page 4-90
• “Trigger One Scope with Another Scope” on page 9-20

 See Also

4-97

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_file_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_file_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_file_osc')))

Create File Scopes with Simulink Real-Time Explorer
You can create a file scope on the target computer using Simulink Real-Time Explorer.
These scopes have the full capabilities of the Scope block in File mode, but do not
persist past the current execution.

Note For information on using file scope blocks, see “Configure Real-Time File Scope
Blocks” on page 4-93 and “File Scope Usage” on page 4-90.

This procedure uses the model xpcosc. You must have already completed the following
setup:

1 Built and downloaded the real-time application to the target computer using
Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (Tools > Simulink Real-Time).
3 Connected to the target computer in the Targets pane (on the toolbar).
4 Set property Stop time to inf in the Applications pane (on the toolbar).

To configure a file scope:

1 In the Scopes pane, expand the xpcosc node.
2 To add a file scope, select File Scopes, and then click the Add Scope button on

the toolbar.
3 Expand Scope 1, and then click the Properties button on the toolbar.
4 In the Scope Properties pane, click Signals.

Add signals from the Applications Signals workspace.
5 In the Applications pane, expand both the real-time application node and the node

Model Hierarchy.
6 Select the model node and then click the View Signals button on the toolbar.
7 In the Signals workspace, to add signal Signal Generator to Scope1, drag signal

Signal Generator to the Scope1 properties workspace.
8 Add signal Integrator1 to Scope 1 in the same way.

4 Signals and Parameters

4-98

9 In the Scope Properties pane, click File.
10 Enter a name in the File name text box, for example scope1.dat.
11 To have the file scope collect data up to Number of samples and then start over

again reading new data, select the AutoRestart check box.
12 Leave the Dynamic File Mode check box cleared.
13 To start execution, click the real-time application and then click the Start

button on the toolbar.
14 Caution Before starting the scope, copy previously acquired data to the development

computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

To start Scope 1, click Scope 1 in the Scopes pane, and then click the Start Scope
button on the toolbar.

15 To stop Scope 1, click Scope 1 in the Scopes pane, and then click the Stop Scope
button on the toolbar.

For file scopes, before adding or removing signals, stop the scope first.
16 To stop execution, click the real-time application, and then click the Stop

button on the toolbar.
17 To view the file that you generated, in the Targets pane, expand the target

computer and then double-click File System.
18 Select C:\. The dialog box looks like this figure.

 Create File Scopes with Simulink Real-Time Explorer

4-99

4 Signals and Parameters

4-100

19 To retrieve the file from the target computer, select the file in the target computer
File System pane. Drag it to the MATLAB Current Folder pane or to a Windows
Explorer window.

You can create a file scope from the list of scope types by clicking Add Scope next to
scope type File Scopes.

To rename file SCOPE1.DAT, right-click the file name, select Rename, type the new
name in the text box, and then click Enter.

To delete file SCOPE1.DAT, right-click the file name and select Delete.

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

See Also

More About
• “Log Signal Data into Multiple Files” on page 4-106
• “Configure File Scopes with Simulink Real-Time Explorer” on page 4-102
• “Using SimulinkRealTime.fileSystem Objects” on page 10-4
• “Create Signal Groups with Simulink Real-Time Explorer” on page 4-58
• “Configure Scope Sampling with Simulink Real-Time Explorer” on page 4-37
• “Trigger Scopes with Simulink Real-Time Explorer” on page 4-41
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

 See Also

4-101

Configure File Scopes with Simulink Real-Time Explorer
You can configure your file scopes to facilitate data logging. You can configure a file scope
whether you added a Scope block to your model or added the scope at run time.

This procedure uses the model xpcosc. You must have already completed the procedure
in “Create File Scopes with Simulink Real-Time Explorer” on page 4-98. Target execution
and scopes must be stopped.

1 Select Scope 1, and then open the Properties pane (on the Scopes toolbar).
2 In the Scope 1 Properties pane, click File.
3 Enter a name in the File name text box, for example scope2.dat.

File names on the target computer are limited to eight characters in length, not
counting the file extension. If the name is longer than eight characters, the software
truncates it to six characters and adds '~1' to the end of the file name.

If you enter just the file name, the file appears in folder C:\. To put the file in a
folder, create the folder separately using the target computer command line or
MATLAB language.

A fully qualified file name can have a maximum of 260 characters: The file part can
have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

If a file with this name exists when you start the file scope, the file scope overwrites
the old data with the new data.

4 Select File mode Commit.

The default File mode is Lazy. When real-time execution stops without an error,
both the Lazy and Commit settings of the Mode box have the same result. Both
settings cause the model to open a file, write signal data to the file, and close that
file at the end of the session. The differences are in when the software updates the
FAT entry for the file.

• In Commit mode, the FAT entry and the actual file size are updated during each
file write operation.

• In Lazy mode, the FAT entry and the actual file size are updated only when the
file is closed and not during each file write operation.

4 Signals and Parameters

4-102

Lazy mode is faster than Commit mode. However, if the target computer enters an
error state, the system can stop responding before the file is closed. In Lazy mode,
the actual file size can be lost, even though the file was written. You can lose an
amount of data equivalent to the setting of the WriteSize parameter.

5 To have the file scope collect data up to Number of samples and then start over
again reading new data, select the AutoRestart check box.

6 Leave the Dynamic File Mode check box cleared.
7 Leave Write Size set to the default value of 512.

Using a block size that is the same as the disk sector size improves performance.
8 Leave Max write file size set to the default value, which is a multiple of Write

Size.
9 Start execution (on the Applications toolbar).
10 Caution Before starting the scope, copy previously acquired data to the development

computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

Start Scope 1(on the Scopes toolbar). Let it run for up to a minute.
11 Stop Scope 1 (on the Scopes toolbar).
12 Stop execution (on the Applications toolbar).

 Configure File Scopes with Simulink Real-Time Explorer

4-103

4 Signals and Parameters

4-104

13 To retrieve the file from the target computer, select the file in the target computer
File System pane. Drag it to the MATLAB Current Folder pane or to a Windows
Explorer window.

To rename file SCOPE2.DAT, right-click the file name, select Rename, type the new
name in the text box, and then click Enter.

To delete file SCOPE2.DAT, right-click the file name and select Delete.

See Also
SimulinkRealTime.fileSystem.mkdir

More About
• “Log Signal Data into Multiple Files” on page 4-106
• “Using SimulinkRealTime.fileSystem Objects” on page 10-4
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

 See Also

4-105

Log Signal Data into Multiple Files
You can acquire signal data to store in multiple, dynamically named files on the target
computer. You can then examine one file while the scope continues to acquire data to
store in other files. To acquire data for multiple files, add a file scope to the real-time
application, and then configure that scope to log signal data to multiple files.

Using model xpcosc, complete the setup tasks in “Create File Scopes with Simulink
Real-Time Explorer” on page 4-98.

1 In Simulink Real-Time Explorer, in the Scopes pane, expand the xpcosc node.
2 Select File Scopes and expand node File Scopes.
3 Expand Scope 1 and then click the Properties button on the toolbar.
4 In the Scope Properties pane, click File.
5 Select the AutoRestart check box.

When you select the AutoRestart box, the file scope collects data up to Number of
samples and then starts over again reading new data. Setting AutoRestart enables
the following parameters: Dynamic file name enabled and Max file size in bytes
(multiple of WriteSize).

6 Select the Dynamic File Mode check box.
7 To enable the file scope to create multiple log files based on the same name, in the

File name box, enter a name like scope1_<%>.dat.

This sequence directs the software to create up to nine log files, scope1_1.dat to
scope1_9.dat, on the target computer file system.

You can configure the file scope to create up to 99999999 files (<%%%%%%%%>.dat).
The length of a file name, including the specifier, cannot exceed eight characters.

8 In the Max write file size box, enter a value to limit the size of the signal log files.
This value must be a multiple of the Write Size value. For example, if the write size
is 512, enter 4096 to limit each log file size to 4096 bytes.

9 To start execution, click the real-time application and then click the Start
button on the toolbar.

10 Caution Before starting the scope, copy previously acquired data to the development
computer. When the file scope starts, the software overwrites previously acquired

4 Signals and Parameters

4-106

data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

To start Scope 1, click Scope 1 in the Scopes pane and then click the Start Scope
button on the toolbar.

Let Scope 1 run for up to a minute.
11 To stop Scope 1, click Scope 1 in the Scopes pane and then click the Stop Scope

button on the toolbar.
12 To stop execution, click the real-time application and then click the Stop

button on the toolbar.
13 To view the files that you generated, in the Targets pane, expand the target

computer, and then double-click File System.
14 Select C:\. The dialog box looks like this figure.

 Log Signal Data into Multiple Files

4-107

The software creates a log file named SCOPE1_1.DAT and writes data to that file.
When the size of the first file reaches 4096 bytes (Max write file size), the software
closes the first file and creates the second file, SCOPE1_2.DAT. When the size of the

4 Signals and Parameters

4-108

second file reaches 4096 bytes, the software creates the third file, the fourth file, and
so on.

If the real-time application continues to collect data after the software closes
SCOPE1_9.DAT, the software reopens SCOPE1_1.DAT, SCOPE1_2.DAT, and so on,
overwriting the existing contents.

15 Drag each file from the target computer File System pane to the MATLAB Current
Folder pane or to a Windows Explorer window.

See Also
File System

More About
• “File Scope Usage” on page 4-90
• “Using SimulinkRealTime.fileSystem Objects” on page 10-4
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

 See Also

4-109

Log Signal Data with Outport Blocks and Simulink Real-Time
Explorer

To use Simulink Real-Time Explorer for signal logging, add an Outport block to your
Simulink model. Activate logging on the Data Import/Export pane in the Configuration
Parameters dialog box.

To access the data log that the real-time application creates when it is running on the
target computer, use Real-Time Application.

The example begins with the model ex_slrt_rt_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))). The final configured model is ex_slrt_outport_osc
(matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_outport_osc')))):

The logged outputs are the signals connected to Simulink Outport blocks. The model has
one Outport block, with index 1. This Outport block shows the signals leaving the block
labeled Mux.

In this section...
“Data Logs” on page 4-111
“Configure the Model for Data Logging” on page 4-112

4 Signals and Parameters

4-110

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))

In this section...
“Log the Data” on page 4-112
“Download and Plot the Data” on page 4-112

Data Logs
Simulink Real-Time stores logged data in four data logs that you can access on the
development computer by using Real-Time Application. In the following list, tg is the
name of the SimulinkRealTime.target object that you use to communicate with the
target computer.

• tg.TimeLog — Time or T-vector, specified as a vector of double. To turn on, in the
Data Import/Export pane, set the Time model parameter.

• tg.OutputLog — Output or Y-vector, specified as a matrix. To turn on, in the Data
Import/Export pane, set the Output model parameter.

• tg.TETLog — Task-execution-time vector, specified as a vector of double. To turn on,
in the Simulink Real-Time Options pane, set the Monitor Task Execution Time
model parameter.

• tg.StateLog — State or X-vector, specified as a matrix. To turn on, in the Data
Import/Export pane, set the State model parameter.

Turn on logging for only the data that you are interested in.

Each Outport block has an associated column vector in tg.OutputLog. You can access
the data that corresponds to a particular Outport block by specifying the column vector
for that block. For example, to access the data that corresponds to Outport 2, use
tg.outputlog(:,2).

To download part of the logs, use the target object method
SimulinkRealTime.target.getlog.

Note

• The data logging variables tout, xout, yout, and logsout are available only when
you use Simulink to simulate the model in non-real-time.

• You cannot use Simulation Data Inspector to create a data log on the target computer.
You can log only signals that are connected to an Outport block.

 Log Signal Data with Outport Blocks and Simulink Real-Time Explorer

4-111

Configure the Model for Data Logging
1 Click Simulation > Model Configuration Parameters.
2 To allow Simulink to log signals, in the Data Import/Export pane, check that the

Time and Output check boxes are selected. These check boxes are selected by
default.

3 To plot the task execution time, in the Code Generation > Simulink Real-Time
Options pane, check that the Monitor Task Execution Time parameter is
selected. This check box is selected by default.

4 To create a buffer for the signals that you are logging, set Signal logging buffer
size in doubles to the required value.

The default value of 100000 units is large enough for this model.
5 From the File menu, click Save as.

Enter ex_slrt_outport_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_outport_osc')))). Click Save.

6 Click OK.

Log the Data
1 In the Simulink Editor, on the toolbar, click the Build Model button .
2 Run Simulink Real-Time Explorer (Tools > Simulink Real-Time).
3 To connect to the target computer in the Targets pane, click the Connect button

 on the toolbar.
4 To start execution, click the real-time application, and then on the toolbar, click the

Start button .
5 To stop execution, click the real-time application, and then on the toolbar, click the

Stop button .

Download and Plot the Data
1 Download and plot the logged times and output values from the target computer. In

the Command Window, type:

4 Signals and Parameters

4-112

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))

tg = slrt;
timelog = tg.TimeLog;
outputlog = tg.OutputLog;
plot(timelog, outputlog)

2 Download and plot the task execution times for the target computer. In the
Command Window, type:

 Log Signal Data with Outport Blocks and Simulink Real-Time Explorer

4-113

tetlog = tg.TETLog;
plot(timelog, tetlog)

The plot shown is the result of a real-time execution.
3 In the Command Window, type:

tg.AvgTET

4 Signals and Parameters

4-114

ans =

 5.7528e-006

The percentage of CPU performance is the average TET divided by the sample time.

Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step. For a multirate model, use the profiler to find out what the execution time is
for each rate.

See Also
Real-Time Application | SimulinkRealTime.target.getlog

More About
• “Simulate Simulink Model with MATLAB Language”
• “Log Signal Data with Outport Block and MATLAB Language” on page 4-116
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178
• “Signal Logging Buffer Size” on page 4-123

 See Also

4-115

Log Signal Data with Outport Block and MATLAB Language
To use MATLAB language for signal logging, add an Outport block to your Simulink
model. Activate logging by using MATLAB commands.

To access the data log that the real-time application creates when it is running on the
target computer, use Real-Time Application.

The example begins with the model ex_slrt_rt_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_rt_osc')))). The final configured model is ex_slrt_outport_osc
(matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_outport_osc')))):

The logged outputs are the signals connected to Simulink Outport blocks. The model has
one Outport block, with index 1. This Outport block shows the signals leaving the block
labeled Mux.

In this section...
“Data Logs” on page 4-117
“Configure the Model for Data Logging” on page 4-117
“Log the Data” on page 4-118
“Download and Plot the Data” on page 4-119

4 Signals and Parameters

4-116

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_rt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))

Data Logs

Simulink Real-Time stores logged data in four data logs that you can access on the
development computer by using Real-Time Application. In the following list, tg is the
name of the SimulinkRealTime.target object that you use to communicate with the
target computer.

• tg.TimeLog — Time or T-vector, specified as a vector of double. To turn on, set the
SaveTime model parameter.

• tg.OutputLog — Output or Y-vector, specified as a matrix. To turn on, set the
SaveOutput model parameter.

• tg.TETLog — Task-execution-time vector, specified as a vector of double. To turn on,
set the RL32LogTETModifier model parameter.

• tg.StateLog — State or X-vector, specified as a matrix. To turn on, set the
SaveState model parameter.

Turn on logging for only the data that you are interested in.

Each Outport block has an associated column vector in tg.OutputLog. You can access
the data that corresponds to a particular Outport block by specifying the column vector
for that block. For example, to access the data that corresponds to Outport 2, use
tg.outputlog(:,2).

To download part of the logs, use the target object method
SimulinkRealTime.target.getlog.

Note

• The data logging variables tout, xout, yout, and logsout are available only when
you use Simulink to simulate the model in non-real-time.

• You cannot use Simulation Data Inspector to create a data log on the target computer.
You can log only signals that are connected to an Outport block.

Configure the Model for Data Logging
1 Open model ex_slrt_rt_osc.

 Log Signal Data with Outport Block and MATLAB Language

4-117

mdl = 'ex_slrt_rt_osc';
open_system(mdl);

2 Check that signal data and task execution time are being logged.

get_param(mdl,'SaveTime')

ans =

on

get_param(mdl,'SaveOutput')

ans =

on

get_param(mdl,'RL32LogTETModifier')

ans =

on

These parameters are set to 'on' by default.
3 Check that Signal logging buffer size in doubles is set to a value large enough to

accommodate the number of signals that you are logging.

get_param(mdl,'RL32LogBufSizeModifier')

ans =

100000

The default value of 100000 units is large enough for this model.
4 Save the model under a new name.

save_system(mdl,'ex_slrt_outport_osc');

Log the Data
1 Build the real-time application.

rtwbuild(mdl);
2 Start execution.

4 Signals and Parameters

4-118

tg = slrt;
tg.stoptime = 1;
start(tg);

3 Stop execution.

stop(tg);

Download and Plot the Data
1 Download and plot the logged times and output values from the target computer. In

the Command Window, type:

tg = slrt;
timelog = tg.TimeLog;
outputlog = tg.OutputLog;
plot(timelog, outputlog)

 Log Signal Data with Outport Block and MATLAB Language

4-119

2 Download and plot the task execution times for the target computer. In the
Command Window, type:

tetlog = tg.TETLog;
plot(timelog, tetlog)

4 Signals and Parameters

4-120

The plot shown is the result of a real-time execution.
3 In the Command Window, type:

tg.AvgTET

ans =

 5.7528e-006

 Log Signal Data with Outport Block and MATLAB Language

4-121

The percentage of CPU performance is the average TET divided by the sample time.

Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step. For a multirate model, use the profiler to find out what the execution time is
for each rate.

See Also
Real-Time Application | SimulinkRealTime.target.getlog

More About
• “Simulate Simulink Model with MATLAB Language”
• “Log Signal Data with Outport Blocks and Simulink Real-Time Explorer” on page 4-

110
• “Signal Logging Buffer Size” on page 4-123

4 Signals and Parameters

4-122

Signal Logging Buffer Size
Your real-time application sets aside a buffer for data logging. You specify the buffer size
in the Code Generation > Simulink Real-Time Options pane of the Configuration
Parameters dialog box. Set Signal logging buffer size in doubles to a value large
enough to accommodate the logged signals.

The default buffer size is 100000 units (800000 bytes). Specify only the number of units
that you need. Memory dedicated to data logging is not available for scopes and other
Simulink Real-Time features.

The Simulink Real-Time software calculates the number of samples N for a signal using
this formula:

N = Buffer size in doubles / Logged signals

In this equation, Logged signals, the number of logged signals, breaks down as
follows:

• 1 for time
• 1 for task execution time
• 1 for each logged output
• 1 for each logged state

The scopes copy the last N samples from the log buffer to the target object logs
(tg.TimeLog, tg.OutputLog, tg.StateLog, and tg.TETLog).

 Signal Logging Buffer Size

4-123

Configure File Scopes with MATLAB Language
This procedure shows how to trace signals with file scopes using the Simulink model
xpcosc. You must have already built and downloaded the real-time application for this
model. It also assumes that you are using a serial link.

Note The signal data file can quickly increase in size. To gauge the growth rate of the
file, examine the file size between runs. If the signal data file grows beyond the available
space on the disk, the signal data is corrupted.

1 Create a target object tg that represents target computer TargetPC1. Type:

tg = SimulinkRealTime.target('TargetPC1')
2 To get a list of signals, type:

tg.ShowSignals = 'on'

The Command Window displays a list of the target object properties for the available
signals. For example, these signals are part of the model xpcosc:

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 Scopes = 1
 NumSignals = 7
 ShowSignals = on
 Signals =
 INDEX VALUE Type BLOCK NAME LABEL
 0 0.000000 DOUBLE Gain
 1 0.000000 DOUBLE Gain1
 2 0.000000 DOUBLE Gain2
 3 0.000000 DOUBLE Integrator
 4 0.000000 DOUBLE Integrator1
 5 0.000000 DOUBLE Signal Generator
 6 0.000000 DOUBLE Sum
.
.
.

4 Signals and Parameters

4-124

3 Start running your real-time application. Type:
start(tg)

4 Create a scope to be displayed on the target computer. For example, to create a scope
with an identifier of 2 and a scope object name of sc2, type:

sc2 = addscope(tg, 'file', 2)

No name is initially assigned to FileName. After you start the scope, Simulink Real-
Time assigns a name for the file to acquire the signal data. This name typically
consists of the scope object name, ScopeId, and the beginning letters of the first
signal added to the scope.
sc2 =

Simulink Real-Time Scope
 Application = xpcosc
 ScopeId = 2
 Status = Interrupted
 Type = File
 NumSamples = 250
 NumPrePostSamples = 0
 Decimation = 1
 TriggerMode = FreeRun
 TriggerSignal = -1
 TriggerLevel = 0.000000
 TriggerSlope = Either
 TriggerScope = 2
 TriggerSample = 0
 FileName = unset
 WriteMode = Lazy
 WriteSize = 512
 AutoRestart = off
 DynamicFileName = off
 MaxWriteFileSize = 536870912
 Signals = no Signals defined

5 Add signals to the scope object. For example, to add Integrator1 and Signal
Generator, type:

addsignal(sc2, [4,5])

sc2 =

Simulink Real-Time Scope

 Configure File Scopes with MATLAB Language

4-125

 Application = xpcosc
 ScopeId = 2
 Status = Interrupted
 Type = File
.
.
.
 FileName = unset
 WriteMode = Lazy
 WriteSize = 512
 AutoRestart = off
 DynamicFileName = off
 MaxWriteFileSize = 536870912
 Signals = 4 : Integrator1
 5 : Signal Generator

The target computer displays the following messages:
Scope: 2, signal 4 added

Scope: 2, signal 5 added

After you add signals to a scope object, the file scope does not acquire signal values
until you start the scope.

6 Caution Before starting the scope, copy previously acquired data to the development
computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

Start the scope. For example, to start scope sc2, type:

start(sc2)

The Command Window displays a list of the scope object properties. FileName is
assigned a default file name to contain the signal data for the file scope. This name
typically consists of the scope object name, ScopeId, and the beginning letters of the
first signal added to the scope.
Application= xpcosc
 ScopeId = 2
 Status = Pre-Acquiring
 Type = File
.

4 Signals and Parameters

4-126

.

.
 FileName = c:\sc2Integ.dat
 Mode = Lazy
 WriteSize = 512
 AutoRestart= off
 DynamicFileName = off
 MaxWriteFileSize = 536870912
 Signals = 4 : Integrator1
 5 : Signal Generator

7 Stop the scope. Type:

stop(sc2)
8 Stop the real-time application. In the Command Window, type:

stop(tg)

See Also
SimulinkRealTime.fileSystem | SimulinkRealTime.utils.getFileScopeData
| plot

More About
• “Using SimulinkRealTime.fileSystem Objects” on page 10-4
• “Monitor Signals with MATLAB Language” on page 4-9

 See Also

4-127

Tune Parameters with Simulink Real-Time Explorer
You can use Simulink Real-Time Explorer to change parameters in your real-time
application while it is running or between runs. You do not need to rebuild the Simulink
model, set the Simulink interface to external mode, or connect the Simulink interface
with the real-time application.

This procedure uses the model xpcosc.

Set Up Host Scope
Before tuning parameters, do the following:

1 Build and download model xpcosc to the target computer with Simulink (on the
toolbar).

2 Run Simulink Real-Time Explorer (Tools > Simulink Real-Time).
3 Connect to the target computer that is in the Targets pane (on the toolbar).
4 Set property Stop time to inf in the Applications pane (on the toolbar).
5 In the Scopes pane, expand the xpcosc node.
6 To add a host scope, select Host Scopes, and then click the Add Scope

button on the toolbar.
7 In the Applications pane, expand the real-time application node, and then the node

Model Hierarchy.
8 Double-click the xpcosc node.
9 To add signal Signal Generator to Scope1, drag signal Signal Generator from

the xpcosc signal list to the Scope1 properties workspace.

Add signal Integrator1 to Scope1 in the same way.
10 Expand Scope 1, and then click the Properties button on the toolbar.

To display the host scope signals, in the Scope Properties pane, click Signals.
11 To open the host scope display, select Scope 1, and then click the View Scope

button on the toolbar.

See “Create Host Scopes with Simulink Real-Time Explorer” on page 4-66.

4 Signals and Parameters

4-128

Initial Values
1 To view the initial parameter values, in the Applications pane, expand both the

real-time application node and node Model Hierarchy.
2 Select the model node, and then click the View Parameters button on the

toolbar.
3 Start Scope 1(on the toolbar).
4 Start execution (on the toolbar).

 Tune Parameters with Simulink Real-Time Explorer

4-129

Updated Values

To update a parameter value:

1 In the Applications pane, expand both the real-time application node and node
Model Hierarchy.

2 Select the model node, and then click the View Parameters button on the
toolbar.

The Parameters workspace opens, showing a table of parameters with properties and
actions.

3 To change the value of the Gain for block Gain1 to 100, type 100 into the Value
box, and then press Enter.

To revert the Gain for block Gain1 to its previous value, click the Revert button .
4

Click the Apply parameter value(s) changes button .

Simulink Real-Time Explorer looks like this figure.

4 Signals and Parameters

4-130

5 Stop Scope 1 (on the toolbar).
6 Stop execution (on the toolbar).

Simulink Real-Time does not support parameters of multiword data types.

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

 Tune Parameters with Simulink Real-Time Explorer

4-131

See Also

More About
• “Create Host Scopes with Simulink Real-Time Explorer” on page 4-66
• “Configure Real-Time Host Scope Blocks” on page 4-62
• “Create Parameter Groups with Simulink Real-Time Explorer” on page 4-133
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178
• “Parameters Not Accessible by Name” on page 4-185

4 Signals and Parameters

4-132

Create Parameter Groups with Simulink Real-Time Explorer
When testing a complex model composed of many reference models, you tune parameters
from multiple parts and levels of the model. To do so, create a parameter group.

This procedure uses the model xpcosc. You must have already completed the following
setup:

1 Built and downloaded the real-time application to the target computer using
Simulink (on the toolbar).

2 Run Simulink Real-Time Explorer (Tools > Simulink Real-Time).
3 Connected to the target computer in the Targets pane (on the toolbar).

To create a parameter group:

1 In the Applications pane, expand the real-time application node, and then right-
click the Groupings node.

2 Click New Parameter Group.
3 In the Add New Parameter Group Item dialog box, enter a name in the Name text

box (for example, ParamGroup1.par). In the Location text box, enter a folder for
the group file.

4 Click OK. A new parameter group appears, along with its Parameter Group
workspace.

5 In the Applications pane, expand both the real-time application node and the node
Model Hierarchy.

6 Select the model node, and then click the View Parameters button on the
toolbar.

The Parameters workspace opens, showing a table of parameters with properties and
actions.

7 In the Parameters workspace, to add parameter Amplitude to ParamGroup1.par,
drag parameter Amplitude to the ParamGroup1.par properties workspace.

8 Add parameter Frequency to ParamGroup1.par in the same way.
9

Press Enter, and then click the Save button on the toolbar.

 Create Parameter Groups with Simulink Real-Time Explorer

4-133

Parameters are defined within a particular real-time application. To open a parameter
group from the File > Open > Group menu, you must first select an application.

To remove parameters from the parameter group, select the parameter items in the
group list and click Delete Parameters.

To remove the parameter group, navigate to the parameter group under Groupings >
Parameters, right-click the parameter group, and click Remove.

To make both workspaces visible at the same time, drag one workspace tab down until
the icon appears in the middle of the dialog box. Continue to drag the workspace until
the cursor reaches the required quadrant, and then release the mouse button.

To save your Simulink Real-Time Explorer layout, click File > Save Layout. In a later
session, you can click File > Restore Layout to restore your layout.

4 Signals and Parameters

4-134

See Also

More About
• “Tune Parameters with Simulink Real-Time Explorer” on page 4-128
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178

 See Also

4-135

Tune Parameters with MATLAB Language
You use the MATLAB functions to change block parameters. With these functions, you
do not need to set the Simulink interface to external mode. You also do not need to
connect the Simulink interface with the real-time application.

You can download parameters to the real-time application while it is running or between
runs. You can change parameters in your real-time application without rebuilding the
Simulink model and change them back to their original values. using Simulink Real-
Time functions.

Note

• Simulink Real-Time does not support parameters of multiword data types.
• Parameter access by parameter index will be removed in a future release. Access

parameters by parameter name instead.
• Method names are case-sensitive and must be complete. Property names are not case-

sensitive and do not need to be complete, as long as they are unique.

This procedure uses the Simulink model xpcosc. You must have already created and
downloaded the real-time application to the default target computer.

1 In the Command Window, type:

tg = slrt;

start(tg)

The target computer displays the following message:

System: execution started (sample time: 0.001000)
2 Display a list of parameters. Type:

tg.ShowParameters = 'on'

The ShowParameters command displays a list of properties for the target object.

Target: TargetPC1
 Connected = Yes

4 Signals and Parameters

4-136

 Application= xpcosc
.
.
.
 NumParameters = 7
 ShowParameters = on
 Parameters =

 VALUE TYPE SIZE PARAMETER NAME BLOCK NAME
 1000000 DOUBLE Scalar Gain Gain
 400 DOUBLE Scalar Gain Gain1
 1000000 DOUBLE Scalar Gain Gain2
 0 DOUBLE Scalar InitialCondition Integrator
 0 DOUBLE Scalar InitialCondition Integrator1
 4 DOUBLE Scalar Amplitude Signal Generator
 20 DOUBLE Scalar Frequency Signal Generator

3 Change the gain. For example, to change the Gain1 block, type:

pt = setparam(tg, 'Gain1', 'Gain', 800)

The setparam method returns a structure that stores the source information, the
previous value, and the new value.

When you change parameters, the changed parameters in the target object are
downloaded to the real-time application. The development computer displays the
following message:

pt =

 Source: {'Gain1' 'Gain'}
 OldValues: 400
 NewValues: 800

The real-time application runs. The plot frame updates the signals for the active
scopes.

4 Stop the real-time application. In the Command Window, type:

stop(tg)
5 To reset to the previous values, type:

pt = setparam(tg, pt.Source{1}, pt.Source{2}, pt.OldValues)

pt =

 Tune Parameters with MATLAB Language

4-137

 Source: {'Gain1' 'Gain'}
 OldValues: 800
 NewValues: 400

See Also

More About
• “Parameters Not Accessible by Name” on page 4-185

4 Signals and Parameters

4-138

Tune Parameters with Simulink External Mode
You use Simulink external mode to connect your Simulink model to your real-time
application. The model becomes a user interface to your real-time application. You set up
the Simulink interface in external mode to establish a communication channel between
your Simulink model and your real-time application.

In Simulink external mode, when you change parameters in the Simulink model,
Simulink downloads those parameters to the real-time application while it is running.
You can change parameters in your program without rebuilding the Simulink model to
create a new real-time application.

Note Simulink Real-Time does not support parameters of multiword data types.

After you download your real-time application to the target computer, you can connect
your Simulink model to the real-time application. This procedure uses the Simulink
model xpcosc. You must have already built and downloaded the real-time application
for that model.

1 In the Simulink editor, click Simulation > Mode > External. A check mark
appears next to the menu item External, and Simulink external mode is activated.

2 Click the Run button on the toolbar.

The real-time application begins running on the target computer, and the target
computer displays the following message:

System: execution started (sample time: 0.000250)
3 From the Simulation block diagram, double-click the block labeled Gain1
4 In the Block Parameters: Gain1 parameter dialog box, the Gain text box, enter 800.

Click OK.

When you change a MATLAB variable and click OK, the changed parameters in the
model are downloaded to the real-time application.

5 From the Simulation menu, click Disconnect from Target.

The Simulink model is disconnected from the real-time application. If you then
change a block parameter in the Simulink model, the real-time application does not
change.

 Tune Parameters with Simulink External Mode

4-139

6 In the Command Window, type:

tg = slrt('TargetPC1')
stop(tg)

See Also

More About
• “Parameters Not Accessible by Name” on page 4-185

4 Signals and Parameters

4-140

Save and Reload Parameters with MATLAB Language
After you have a set of real-time application parameter values, save those values to a file
on the target computer. You can then later reload these parameter values to the same
real-time application.

You can save parameters from your real-time application while the real-time application
is running or between runs. You can save and restore parameters in your real-time
application without rebuilding the Simulink model. Load parameters to the same model
from which you save the parameter file. If you load a parameter file to a different model,
the behavior is undefined.

You save and restore parameters with the target object methods saveparamset and
loadparamset.

Requirements:

• You have a real-time application object named tg.
• You have assigned tg to the target computer.
• You have downloaded a real-time application to the target computer.
• You have parameters to save.

In this section...
“Save the Current Set of Real-Time Application Parameters” on page 4-141
“Load Saved Parameters to a Real-Time Application” on page 4-142
“List Parameter Values Stored in a File” on page 4-142

Save the Current Set of Real-Time Application Parameters

To save a set of parameters to a real-time application, use the saveparamset method.
This example uses the model ex_slrt_outport_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_outport_osc')))). The real-time application can be stopped or running.

1 Identify the set of parameter values that you want to save.
2 Select a descriptive file name for the parameters. For example, use the model name

in the file name.

 Save and Reload Parameters with MATLAB Language

4-141

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))

3 In the Command Window, type:

tg = slrt;
saveparamset(tg, 'ex_slrt_outport_osc_param1')

The Simulink Real-Time software creates a file named
ex_slrt_outport_osc_param1 in the current folder of the target computer, for
example, C:\ex_slrt_outport_osc_param1.

Load Saved Parameters to a Real-Time Application
To load a set of saved parameters to a real-time application, use the loadparamset
method.

Load parameters to the same model from which you save the parameter file. If you load a
parameter file to a different model, the behavior is undefined. This example uses the
model ex_slrt_outport_osc (matlab:
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_outport_osc')))).

This section assumes that you have a parameters file saved from an earlier run of
saveparamset (see “Save the Current Set of Real-Time Application Parameters” on
page 4-141).

1 From the collection of parameter value files on the target computer, select the one
that contains the parameter values you want to load.

2 In the Command Window, type:

tg = slrt;
loadparamset(tg, 'ex_slrt_outport_osc_param1')

The Simulink Real-Time software loads the parameter values into the real-time
application.

List Parameter Values Stored in a File
To list parameters and their values, load the file for a real-time application, and then
turn on the ShowParameters target object property.

You must have a parameters file saved from an earlier run of saveparamset (see “Save
the Current Set of Real-Time Application Parameters” on page 4-141).

4 Signals and Parameters

4-142

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_outport_osc')))

1 Stop the real-time application. In the Command Window, type:

stop(tg)
2 Load the parameter file. Type:

tg = slrt;
loadparamset(tg, 'ex_slrt_outport_osc_param1');

3 Display a list of parameters. Type:

tg.ShowParameters = 'on'

The Command Window displays a list of parameters and their values for the target
object.

See Also

More About
• “Load a parameter set from a file on the designated target file system”
• “Tune Parameters with Simulink Real-Time Explorer” on page 4-128
• “Tune Parameters with MATLAB Language” on page 4-136
• “Tune Parameters with Simulink External Mode” on page 4-139

 See Also

4-143

Tunable Block Parameters and Tunable Global Parameters
To change the behavior of a real-time application, you can tune Simulink Real-Time
tunable parameters. In Simulink external mode, you can change the parameters directly
in the block or indirectly by using MATLAB variables to create tunable global
parameters. Simulink Real-Time Explorer and MATLAB language enable you to change
parameter values and MATLAB variables as your real-time application is executing.

Note Simulink Real-Time does not support parameters of multiword data types.

Tunable Parameters

Simulink Coder defines two kinds of parameters that can be modified during execution:
tunable block parameters and tunable global parameters.

Tunable Block Parameters

A tunable block parameter is a literal expression that you reference in a Simulink block
dialog box.

Suppose that you assign the value 5/2 to the Amplitude parameter of a Signal
Generator block. Amplitude is a tunable parameter.

Tunable Global Parameter

A tunable global parameter is a variable in the MATLAB workspace that you reference
in a Simulink block dialog box.

Suppose that you enter A in the Amplitude parameter of a Signal Generator block.
Variable A is a tunable parameter.

You can tune the values of MATLAB variables that are grouped in a parameter
structure. For example:

1 Assign a parameter structure that contains the field Ampl to variable A.
2 Enter A.Ampl in the Amplitude parameter of a Signal Generator block.
3 Change the amplitude of the signal generator by tuning the value of A.Ampl in the

MATLAB workspace during simulation.

4 Signals and Parameters

4-144

Inlined Parameters

To optimize execution efficiency, you can change the Default parameter behavior
option from Tunable to Inlined in the Signals and Parameters pane of the
Optimization node.

You cannot tune inlined block parameters. You can define a tunable global parameter or
Simulink.Parameter object, enter it in the parameter in the block dialog box, and tune
the MATLAB variable or object.

For more information about inlined parameters, see “Default parameter behavior”
(Simulink).

Tuning in External Mode

In external mode, Simulink Real-Time connects your Simulink model to your real-time
application. The block diagram becomes a user interface for the real-time application.

You can change a block parameter value during execution in the block dialog box. When
you click OK, Simulink transfers the new value to the real-time application.

You can also change a tunable global parameter during execution by assigning a new
value to the MATLAB workspace. You must then explicitly command Simulink to
transfer the data by pressing Ctrl+D or clicking Simulation > Update Diagram.

Tuning with Simulink Real-Time Explorer

During real-time execution, Simulink Real-Time Explorer becomes a user interface for
the real-time application.

To access a block parameter value, navigate to the block in the Explorer model hierarchy.
You can change the value in a text entry box in the parameter window. When you apply
the new value, Simulink Real-Time transfers the new value to the real-time application.

You can access a tunable global parameter at the top level of the model hierarchy.
Change it the same way as you would a tunable block parameter.

You can also use Simulink Real-Time Explorer instrument panels to tune block
parameters and global parameters.

 Tunable Block Parameters and Tunable Global Parameters

4-145

Tuning with MATLAB Language

To change the values of tunable block parameters and tunable global parameters during
execution, use the Simulink Real-Time command setparam. The following code
examples use the model xpcosc.

To change a block parameter value, use a nonempty block path and the parameter name.
For example, to change the amplitude of the signal generator:

tg = slrt;
setparam(tg, 'Signal Generator', 'Amplitude', 4.57)

To change a tunable global parameter, use the variable name. For example, to change
the amplitude of the signal generator via the parameter structure field A.Ampl:

tg = slrt;
setparam(tg, 'A.Ampl', 4.57)

See Also
SimulinkRealTime.target.getparam | SimulinkRealTime.target.setparam

More About
• “Tune Inlined Parameters with Simulink Real-Time Explorer” on page 4-147
• “Default parameter behavior” (Simulink)
• “Specify Source for Data in Model Workspace” (Simulink)
• “Parameters Not Accessible by Name” on page 4-185
• “Tune and Experiment with Block Parameter Values” (Simulink)
• “Share and Reuse Block Parameter Values by Creating Variables” (Simulink)
• “Block Parameter Representation in the Generated Code” (Simulink Coder)
• “Configure Data Accessibility for Rapid Prototyping” (Simulink Coder)

4 Signals and Parameters

4-146

Tune Inlined Parameters with Simulink Real-Time Explorer
This procedure describes how you can tune inlined parameters through the Simulink
Real-Time Explorer.

Note Simulink Real-Time does not support parameters of multiword data types.

The following procedure starts with the Simulink model xpcosc and produces the model
ex_slrt_inlined_osc (matlab: open_system(docpath(fullfile(docroot,
'toolbox', 'xpc', 'examples', 'ex_slrt_inlined_osc')))).

Configure Model to Tune Inlined Parameters
1 In the Command Window, type xpcosc. The model is displayed in the Simulink

Editor.
2 Select the blocks containing the parameters that you want to tune. For example, this

procedure makes the Amplitude parameter of the Signal Generator block tunable.
To represent the amplitude, use the variable A.

3 Double-click the Signal Generator block, and then enter A for the Amplitude
parameter. Click OK.

4 In the Command Window, assign a constant to that variable. For example, type:

A = 4

The value is displayed in the MATLAB workspace.
5 From the Simulink Editor, click Simulation > Model Configuration Parameters.
6 In the Configuration Parameters dialog box, select the Signals and Parameters

node under Optimization.
7 In the right pane, set Default parameter behavior to Inlined.

 Tune Inlined Parameters with Simulink Real-Time Explorer

4-147

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inlined_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inlined_osc')))

8 Click Configure.

The Model Parameter Configuration dialog box opens. The MATLAB workspace
contains the constant you assigned to A.

9 Select the line that contains your constant. Click Add to table.

4 Signals and Parameters

4-148

Add the remaining global parameters that you want to tune.
10 Click Apply, and then click OK.
11 In the Configuration Parameters dialog box, click Apply, and then OK.
12 Save the model. For example, save it as ex_slrt_inlined_osc (matlab:

open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inlined_osc')))).

13 Build and download the model to your target computer.

 Tune Inlined Parameters with Simulink Real-Time Explorer

4-149

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inlined_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inlined_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inlined_osc')))

Initial Value
1 Select the real-time application in the Applications pane (for example,

ex_slrt_inlined_osc).
2 To start execution, click the real-time application, and then click the Start

button on the toolbar.
3 To start Scope 1, click Scope 1 in the Scopes pane, and then click the Start Scope

button on the toolbar.
4 In the Applications pane, expand both the real-time application node and the

Model Hierarchy node.
5 Select the model node, and then click the View Parameters button on the

toolbar. The Parameters workspace opens, showing a table of parameters with
properties and actions.

4 Signals and Parameters

4-150

Updated Value
1 To change the value of MATLAB variable A to 2, type 2 into the Value box, and then

press Enter.

To revert the value of A to its previous value, click the Revert button .
2

Click the Apply parameter value(s) changes button .

The dialog box looks like this figure.

 Tune Inlined Parameters with Simulink Real-Time Explorer

4-151

3 To stop Scope 1, click Scope 1 in the Scopes pane, and then click the Stop Scope
button on the toolbar.

4 To stop execution, click the real-time application, and then click the Stop
button on the toolbar.

See Also

More About
• “Tune Inlined Parameters with MATLAB Language” on page 4-154

4 Signals and Parameters

4-152

• “Display and Filter Hierarchical Signals and Parameters” on page 4-178
• “Parameters Not Accessible by Name” on page 4-185

 See Also

4-153

Tune Inlined Parameters with MATLAB Language
This procedure describes how you can tune inlined parameters through the MATLAB
interface. You must have already built and downloaded the model
ex_slrt_inlined_osc (matlab: open_system(docpath(fullfile(docroot,
'toolbox', 'xpc', 'examples', 'ex_slrt_inlined_osc')))). The model must
already be running.

Note Simulink Real-Time does not support parameters of multiword data types.

You can tune inlined parameters using a parameter ID.

• To get the ID of the inlined parameter that you want to tune, use the getparamid
function. For the block_name parameter, leave a blank ('').

• To set the new value for the inlined parameter, use the setparam function.

1 Save the following code in a MATLAB file. For example, change_inlineA.

tg = slrt; %Create Simulink Real-Time object
pid = getparamid(tg, '', 'A'); %Get parameter ID of A

if isempty(pid) %Check value of pid.
 error('Could not find A');
end

setparam(tg, pid, 100); %If pid is valid, set parameter value.
2 Execute that MATLAB file. Type:

change_inlineA
3 To see the new parameter value, type:

tg.ShowParameters = 'on'

The tg object information is displayed, including the parameter lines:

NumParameters = 1

ShowParameters = on

Parameters = INDEX VALUE TYPE SIZE PARAMETER NAME BLOCK NAME

4 Signals and Parameters

4-154

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inlined_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inlined_osc')))

 0 100 DOUBLE Scalar A

See Also

More About
• “Parameters Not Accessible by Name” on page 4-185

 See Also

4-155

Tune Parameter Structures with Simulink Real-Time Explorer

In this section...
“Create Parameter Structure” on page 4-156
“Replace Block Parameters with Parameter Structure Fields” on page 4-157
“Tune Parameters in a Parameter Structure” on page 4-158
“Save and Load Parameter Structure” on page 4-160

To reduce the number of workspace variables you must maintain and avoid name
conflicts, you can group closely related parameters into structures (see “Organize Related
Block Parameter Definitions in Structures” (Simulink)).

In this example, the initial model xpcosc has four parameters that among them
determine the shape of the output waveform.
Block Parameter Structure Field

Expression
Initial Value

Signal Generator Freq spkp.sg_freq 20
Gain Gain spkp.g_gain 1000^2
Gain1 Gain spkp.g1_gain 2*0.2*1000
Gain2 Gain spkp.g2_gain 1000^2

Create Parameter Structure
1 Open xpcosc in a working folder.
2 Open Tools > Model Explorer.
3 Select the Base Workspace node.
4 Click the Add Simulink Parameter button .
5 In the Name column, type the name spkp.
6 In the Storage class field, select ExportedGlobal.
7 In the Value field, type as one line:

struct('sg_freq',20, 'g2_gain',1000^2, ...
 'g1_gain',2*0.2*1000, 'g_gain',1000^2)

4 Signals and Parameters

4-156

The field values duplicate the literal values in the dialog boxes. To change the field
values, in row spkp, click the Value cell and click the Edit button .

8 Click Apply.
9 Save the model as ex_slrt_osc_struct.

Replace Block Parameters with Parameter Structure Fields

1 In the Signal Generator block, replace the value of parameter Frequency with
spkp.sg_freq.

2 In the Gain block, replace the value of parameter Gain with spkp.g_gain.

 Tune Parameter Structures with Simulink Real-Time Explorer

4-157

3 In the Gain1 block, replace the value of parameter Gain with spkp.g1_gain.
4 In the Gain2 block, replace the value of parameter Gain with spkp.g2_gain.

Tune Parameters in a Parameter Structure
1 Build and download the model to your target computer.
2 Open Tools > Simulink Real-Time.
3 In the real-time application properties, set the Stop Time parameter to Inf.
4 Create and configure a host scope:

a In the Model Hierarchy node, right-click the model and open View Signals.
b Add a host scope ().
c Drag the signals Integrator1 and Signal Generator to the scope.
d Start the scope ().
e View the scope ().

5 In the Model Hierarchy node, right-click the model and open View Block
Parameters.

6 Open the Values text box for spkp(1).g1_gain.
7 Start the real-time application ().

4 Signals and Parameters

4-158

8 In the Values text box for spkp(1).g1_gain, change the value to 800, click outside

the box, and click the Apply parameter value(s) changes button .

 Tune Parameter Structures with Simulink Real-Time Explorer

4-159

9 Stop the real-time application ().

Save and Load Parameter Structure
1 In Model Explorer, right-click row spkp.

4 Signals and Parameters

4-160

2 Click Export selected and save the variable as ex_slrt_osc_struct.mat.

To load the parameter structure when you open the model, add a load command to the
PreLoadFcn callback. To remove the parameter structure from the workspace when you
close the model, add a clear command to the CloseFcn callback. For more information,
see “Model Callbacks” (Simulink).

See Also

More About
• “Organize Related Block Parameter Definitions in Structures” (Simulink)
• “Display and Filter Hierarchical Signals and Parameters” on page 4-178
• “Model Callbacks” (Simulink)

 See Also

4-161

Tune Parameter Structures with MATLAB Language
In this section...
“Create Parameter Structure” on page 4-162
“Replace Block Parameters with Parameter Structure Fields” on page 4-163
“Tune Parameters in a Parameter Structure” on page 4-163
“Save and Load Parameter Structure” on page 4-165

To reduce the number of workspace variables you must maintain and avoid name
conflicts, you can group closely related parameters into structures (see “Organize Related
Block Parameter Definitions in Structures” (Simulink)).

In this example, the initial model xpcosc has four parameters that among them
determine the shape of the output waveform.
Block Parameter Structure Field

Expression
Initial Value

Signal Generator Freq spkp.sg_freq 20
Gain Gain spkp.g_gain 1000^2
Gain1 Gain spkp.g1_gain 2*0.2*1000
Gain2 Gain spkp.g2_gain 1000^2

Create Parameter Structure
1 Open xpcosc in a working folder.
2 To create a parameter structure, in the MATLAB Command Window, enter:

kp = struct(...
 'sg_freq', 20, ...
 'g2_gain',1000^2, ...
 'g1_gain', 2*0.2*1000, ...
 'g_gain',1000^2)

kp =

 struct with fields:

 sg_freq: 20

4 Signals and Parameters

4-162

 g2_gain: 1000000
 g1_gain: 400
 g_gain: 1000000

3 To make the parameter structure tunable on the target computer:

spkp = Simulink.Parameter(kp);
spkp.StorageClass = 'ExportedGlobal';
spkp.Value

ans =

 struct with fields:

 sg_freq: 20
 g2_gain: 1000000
 g1_gain: 400
 g_gain: 1000000

Replace Block Parameters with Parameter Structure Fields
1 In the Signal Generator block, replace the value of parameter Frequency with

spkp.sg_freq.
2 In the Gain block, replace the value of parameter Gain with spkp.g_gain.
3 In the Gain1 block, replace the value of parameter Gain with spkp.g1_gain.
4 In the Gain2 block, replace the value of parameter Gain with spkp.g2_gain.

Tune Parameters in a Parameter Structure
1 Build and download the model to the target computer.

rtwbuild('xpcosc')
2 Set stop time to inf.

tg = slrt;
tg.StopTime = inf;

3 Sweep the Gain value of the Gain1 block from 200 to 800.

start(tg);
for g = 200 : 200 : 800
 setparam(tg, 'spkp.g1_gain', g);

 Tune Parameter Structures with MATLAB Language

4-163

 pause(1);
end
stop(tg);

4 Plot the results.

time = tg.TimeLog;
output = tg.OutputLog;
plot(time, output);

4 Signals and Parameters

4-164

Save and Load Parameter Structure

To save the parameter structure spkp for later use, type:

save 'ex_slrt_osc_struct.mat', 'spkp'

To load the parameter structure when you open the model, add a load command to the
PreLoadFcn callback. To remove the parameter structure from the workspace when you
close the model, add a clear command to the CloseFcn callback. For more information,
see “Model Callbacks” (Simulink).

See Also

More About
• “Organize Related Block Parameter Definitions in Structures” (Simulink)
• “Model Callbacks” (Simulink)

 See Also

4-165

Define and Update Inport Data
In this section...
“File Dependencies” on page 4-166
“Map Inport to Use Square Wave” on page 4-166
“Update Inport to Use Sawtooth Wave” on page 4-169

You can create root-level input ports and use Root Inport Mapper to define input data.
You can update the input data without rebuilding the model by using MATLAB
language.

File Dependencies

This procedure depends on the following files:

• ex_slrt_inport_osc (matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inport_osc')))) — Damped oscillator that takes its input data from
input port In1 and sends its muxed output to output port Out1.

• ex_slrt_inport_square.mat (matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inport_square.mat')))) — One second of output from a Signal
Generator block that is configured to output a square wave.

• ex_slrt_inport_sawtooth.mat (matlab: load(docpath(fullfile(docroot, 'toolbox',
'xpc', 'examples', 'ex_slrt_inport_sawtooth.mat')))) — One second of output from a
Signal Generator block that is configured to output a sawtooth wave.

Before starting this procedure, navigate to a working folder.

Map Inport to Use Square Wave
1 Open ex_slrt_inport_osc and save it to a working folder.
2 Load ex_slrt_inport_square.mat and assign square to a temporary workspace

variable for use with Root Inport Mapper.

waveform = square;
3 Double-click input port In1.
4 Clear Interpolate data, and then click Connect Input.

4 Signals and Parameters

4-166

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_osc')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_square.mat')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_square.mat')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_sawtooth.mat')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_sawtooth.mat')))

5 In Root Inport Mapper, click From Workspace and select variable waveform. Clear
the other variables.

6 In the Save to text box, enter a name such as
ex_slrt_inport_waveform_osc.mat, and then click OK.

7 Select map to model option Port order and, in the Options menu, select Update
Model.

8 Click Map to Model.
9 To update the model with the mapped input data, select scenario waveform, and

then click Mark for Simulation.

10 Click Save.

Save the scenario under a name such as
ex_slrt_inport_waveform_scenario.mldatx.

 Define and Update Inport Data

4-167

11 Close the Root Inport Mapper. In the In1 block parameters dialog box, click OK.
12 To display the output of the Mux block with Simulation Data Inspector, right-click

the output signal and select Log Selected Signals.

You can now save, build, download, and execute the real-time application. Display the
output with Simulation Data Inspector.

4 Signals and Parameters

4-168

Update Inport to Use Sawtooth Wave

You can update the inport data to use a different data file without rebuilding the real-
time application. The ex_slrt_inport_osc.mldatx file must be in the working folder.

1 Load ex_slrt_inport_sawtooth.mat, and then assign sawtooth to the
temporary variable that you used with Root Inport Mapper.

load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', ...
 'ex_slrt_inport_sawtooth.mat')));
waveform = sawtooth;

2 Create an application object.

app_object = SimulinkRealTime.Application('ex_slrt_inport_osc');
3 Update the application object.

updateRootLevelInportData(app_object);
4 Load the updated object to the target computer and execute it.

tg = slrt;
load(tg, 'ex_slrt_inport_osc');
start(tg);

5 Display the output with Simulation Data Inspector.

 Define and Update Inport Data

4-169

4 Signals and Parameters

4-170

See Also

More About
• “Define and Update Inport Data with MATLAB Language” on page 4-172
• “Importing and Exporting Simulation Data” (Simulink)
• “Inport Data Mapping Limitations” on page 4-177
• “Inspect Simulink® Real-Time™ Data with Simulation Data Inspector” on page 4-

76

 See Also

4-171

Define and Update Inport Data with MATLAB Language

In this section...
“File Dependencies” on page 4-172
“Map Inport to Use Square Wave” on page 4-172
“Update Inport to Use Sawtooth Wave” on page 4-174

You can create root-level input ports and use the MATLAB language to define input data
and to update the input data without rebuilding the model.

File Dependencies

This procedure depends on the following files:

• ex_slrt_inport_osc (matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inport_osc')))) — Damped oscillator that takes its input data from
input port In1 and sends its muxed output to output port Out1.

• ex_slrt_inport_square.mat (matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_inport_square.mat')))) — One second of output from a Signal
Generator block that is configured to output a square wave.

• ex_slrt_inport_sawtooth.mat (matlab: load(docpath(fullfile(docroot, 'toolbox',
'xpc', 'examples', 'ex_slrt_inport_sawtooth.mat')))) — One second of output from a
Signal Generator block that is configured to output a sawtooth wave.

Before starting this procedure, navigate to a working folder.

Map Inport to Use Square Wave
1 Open ex_slrt_inport_osc.

model = docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',...
 'ex_slrt_inport_osc'));
open_system(model);
save_system(model,'H:\workdir\ex_slrt_inport_osc.slx');

2 Load ex_slrt_inport_square.mat, and then assign square to a temporary
workspace variable.

4 Signals and Parameters

4-172

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_osc')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_square.mat')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_square.mat')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_sawtooth.mat')))
matlab: load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_inport_sawtooth.mat')))

load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', ...
 'ex_slrt_inport_square.mat')));
waveform = square;

3 Open ex_slrt_inport_osc/In1
inport = [model '/In1'];
load_system(inport);

4 Turn off inport data interpolation.

set_param(inport,'Interpolate','off');
5 Set external input variable.

set_param(model,'ExternalInput','waveform');
6 Load external input data.

set_param(model,'LoadExternalInput','on');
7 You can now build, download, and execute the real-time application.

rtwbuild(model);
start(tg);

8 Plot the output.

plot(tg.TimeLog,tg.OutputLog);

 Define and Update Inport Data with MATLAB Language

4-173

Update Inport to Use Sawtooth Wave

You can update the inport data to use a different data file without rebuilding the real-
time application. The ex_slrt_inport_osc.mldatx file must be in the working folder.

1 Load ex_slrt_inport_sawtooth.mat, and then assign sawtooth to the
temporary variable that you used with Root Inport Mapper.

4 Signals and Parameters

4-174

load(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', ...
 'ex_slrt_inport_sawtooth.mat')));
waveform = sawtooth;

2 Create an application object.

app_object = SimulinkRealTime.Application('ex_slrt_inport_osc');
3 Update the application object.

updateRootLevelInportData(app_object);
4 Download the updated object to the target computer and execute it.

tg = slrt;
load(tg, 'ex_slrt_inport_osc');
start(tg);

5 Plot the output.

plot(tg.TimeLog,tg.OutputLog);

 Define and Update Inport Data with MATLAB Language

4-175

See Also

More About
• “Define and Update Inport Data” on page 4-166
• “Importing and Exporting Simulation Data” (Simulink)
• “Inport Data Mapping Limitations” on page 4-177
• “Inspect Simulink® Real-Time™ Data with Simulation Data Inspector” on page 4-

76

4 Signals and Parameters

4-176

Inport Data Mapping Limitations
In Simulink Real-Time, you cannot:

• Create data at run time for each time step by using the input u = UT(t) for
MATLAB functions or expressions.

• Import complex values and asynchronous function-call signals into top-level input
ports.

• Import signals of type Stateflow.SimulationData.State into top-level input
ports.

See Also

More About
• “Define and Update Inport Data” on page 4-166
• “Importing and Exporting Simulation Data” (Simulink)

 Inport Data Mapping Limitations

4-177

Display and Filter Hierarchical Signals and Parameters
In this section...
“Hierarchical Display” on page 4-178
“Filtered Display” on page 4-179
“Grouped Display” on page 4-181

In Simulink Real-Time Explorer, the default view of the signal and parameter lists
shows the signals and parameters only at the level that you selected. You can display
signals and parameters for the current level and below and filter the display to show only
the items that you are interested in.

Hierarchical Display

To show signals and parameters from the current level and below, navigate to the
hierarchical level that you are interested in. Click the Contents of button (on the
toolbar).

The contents of the top level of ex_slrt_sf_car are shown in the figure.

4 Signals and Parameters

4-178

Filtered Display

To restrict display to signals or parameters with a particular characteristic, use the
Filter text box that is on the toolbar. If you display only one level, the filter applies only
to that level.

Explorer supports filtering by values in the following columns:

 Display and Filter Hierarchical Signals and Parameters

4-179

• Signals — Signal Name, Signal Label, Full Path
• Parameters — Name, Block Name, Full Path

For example, to restrict the display of signals and parameters to the shift_logic
subsystem, select column Signal Name. Type shift_logic into the Filter text box.

4 Signals and Parameters

4-180

Grouped Display

To group signals and parameters by columns, right-click the column head and select
Group By This Column. To remove the grouped display, right-click the column head
and select Remove Grouping.

Explorer supports grouping by the following columns:

• Signals — Signal Name, Signal Label, Full Path, Test Point, Dimensions
• Parameters — Name, Block Name, Full Path, Dimensions

For example, to group signals by name, right-click the Signal Name column and select
Group By This Column. To group parameters by name, right-click the Name column
and select Group By This Column.

 Display and Filter Hierarchical Signals and Parameters

4-181

4 Signals and Parameters

4-182

Signals Not Accessible by Name
You cannot monitor, trace, or log by name the following types of signals from the
development computer:

• Virtual or bus signals (including signals from bus creator blocks and virtual blocks).
For example, assume that you connect the output of a Mux block (a virtual block) to a
real-time Scope block. The Scope block displays the names of the Mux input signals
rather than the names of the Mux output signals.

• Signals that Simulinkoptimizes away after you set the Signal storage reuse or
Block reduction configuration parameters.

The output of a block that was optimized away is replaced with the corresponding
input signal to the block. To access these signals, make them test points.

• Blocks that buffer their input signals to make them contiguous. Examples include the
To Workspace block and some S-function blocks. Such blocks generate a signal name
associated with the generated block.

If you connect a signal to the input port of such a block and to a real-time Scope block,
the Scope block cannot access the signal. To access such a signal, add a unit Gain
block (a Gain block with gain 1) before the input to the Scope block.

• Signals of complex or multiword data types.
• If a block name consists only of spaces, Simulink Real-Time Explorer does not display

a node for signals from that block. To reference such a block:

• Provide an alphanumeric name for the block
• Rebuild and download the model to the target computer.
• Reconnect the MATLAB session to the target computer.

See Also
Gain

More About
• “Nonvirtual and Virtual Blocks” (Simulink)
• “Virtual Signals” (Simulink)

 Signals Not Accessible by Name

4-183

• “Signal storage reuse” (Simulink)
• “Block reduction” (Simulink)
• “Parameters Not Accessible by Name” on page 4-185
• “Internationalization Issues” on page 4-186

4 Signals and Parameters

4-184

Parameters Not Accessible by Name
• Simulink Real-Time does not support parameters of multiword data types.
• You cannot tune parameters during execution that change the model structure, for

example by adding a port. To change these parameters, you must stop execution,
change the parameter, and rebuild the real-time application.

See Also

More About
• “Signals Not Accessible by Name” on page 4-183
• “Internationalization Issues” on page 4-186

 Parameters Not Accessible by Name

4-185

Internationalization Issues
Simulink Real-Time inherits the internationalization support of the products it depends
upon: Simulink, Simulink Coder, and Embedded Coder®. Signal and parameter names
that include Unicode® characters are displayed as expected in Simulink Real-Time
Explorer and at the MATLAB command line. In particular, when you use host scopes to
observe signals, the non-ASCII signal names are displayed as expected.

Third-party code, such as parsers for vendor configuration files, sometimes does not
support cross-locale, cross-platform internationalization. For such code, files and folders
must be given locale-specific names. For example, when parsing a configuration file on an
English-locale machine, name the file and enclosing folder with English-locale-specific
names.

The Simulink Real-Time kernel does not support international (non-ASCII) characters. It
generates messages in English using ASCII characters. When interacting with the kernel
through the target computer keyboard, you identify signals and parameters by numeric
ID, not by names.

When you use target scopes to observe signals, the kernel replaces a signal label that
includes non-ASCII characters with the numeric ID. It replaces each non-ASCII
character in the block path (hierarchical signal name) with the character ?.

For example, assume that the signal with ID 1 appears in an English-language and a
Japanese-language version of the same model. In the English-language version, the
signal label is input1 and the block path is block1/block2. In the Japanese-language
version, the signal label is 入力 1 and the block path is ブロック 1/ブロック 2.

• In single scope mode, the numeric portion of the screen contains this character vector
for the English-language version:

input1: block1/block2

It contains this character vector for the Japanese-language version:

1: ????1/????2
• In multiscope mode, the signal label above the scope contains this character vector for

the English-language version:

input1

It contains this character vector for the Japanese-language version:

4 Signals and Parameters

4-186

1

See Also

More About
• “Signals Not Accessible by Name” on page 4-183
• “Parameters Not Accessible by Name” on page 4-185

 See Also

4-187

Execution Modes

5

Execution Modes
The Simulink Real-Time kernel has three mutually exclusive execution modes. You can
execute the real-time application in one non-real-time mode and in two real-time modes.

• Interrupt mode — To use this real-time mode, on the Simulink Real-Time Options
pane in the Configuration Parameters dialog box, set Execution mode to Real-
Time.

In this mode, the scheduler implements real-time single-tasking and multitasking
execution of single-rate or multirate systems, including asynchronous events
(interrupts). This implementation allows you to interact with the target computer
while the real-time application is executing at high sample rates.

• Polling mode — To use this real-time mode:

1 Use multicore target computer hardware.
2 In Simulink Real-Time Explorer, check that the Multicore CPU target setting is

set to 'on' for the target computer that you intend to use.
3 On the Simulink Real-Time Options pane in the Configuration Parameters

dialog box, set Execution mode to Real-Time.
4 Enable polling by setting the TLCOptions setting -axpcCPUClockPoll to a

nonzero value.

In this mode, the kernel executes real-time applications at sample times close to the
limit of the CPU. Using polling mode with high-speed and low-latency I/O boards and
drivers allows you to achieve real-time application sample times that you cannot
achieve using interrupt mode. Because polling mode disables interrupts on the
processor core where the model runs, it imposes restrictions on the model architecture
and on target communication.

• Freerun mode — To use this non-real-time mode, in the Configuration Parameters
dialog box:

1 On the Simulink Real-Time Options pane, set Execution mode to Freerun.
2 On the Solver pane, clear the check box for Treat each discrete rate as a

separate task.

In this mode, the real-time application thread does not wait for the timer. The kernel
runs the application as fast as possible. If the real-time application has conditional

5 Execution Modes

5-2

code, the time between each execution can vary. Multirate models cannot be executed
in Freerun execution mode.

Interrupt Mode

When you set Execution mode to Real-Time on the Simulink Real-Time Options
pane in the Configuration Parameters dialog box, interrupt mode is the real-time
execution mode set by default. This mode provides the greatest flexibility. Choose this
mode for real-time applications that execute at the given base sample time without
overloading the CPU.

In interrupt mode, the scheduler implements real-time single-tasking and multitasking
execution of single-rate or multirate systems, including asynchronous events
(interrupts). Also, background tasks like target communication or updating the target
display run in parallel with sample-time-based model tasks. This implementation allows
you to interact with the target system while the real-time application is executing at high
sample rates. Interaction is made possible by an interrupt-driven real-time scheduler
responsible for executing the various tasks according to their priority. The base sample
time task can interrupt other tasks (larger sample time tasks or background tasks).
Execution of the interrupted tasks resumes when the base sample time task completes
operation. This capability gives a quasiparallel priority execution scheme.

In interrupt mode, the kernel is close to optimal for executing code on a PC-compatible
system. However, using interrupt mode introduces an overhead, or latency, that reduces
the minimal possible base sample time. The overhead is the sum of various factors
related to the interrupt-driven execution scheme, such as interrupt controller latency,
interrupt handler latency, and CPU latency. The overhead is referred to as overall
interrupt latency.

The overall latency of interrupt mode is equivalent to a Simulink model containing a
hundred nontrivial blocks. At least 5% of headroom is required because the CPU must
also service lower priority tasks. This requirement can cause additional cache misses and
therefore nonoptimal execution speed.

Polling Mode

Polling mode for the kernel is designed to execute real-time applications at sample times
close to the limit of the CPU. Polling mode with high-speed and low-latency I/O boards
and drivers allows you to achieve smaller sample times for real-time applications. You

 Execution Modes

5-3

cannot achieve these smaller sample times using the interrupt mode of the Simulink
Real-Time software.

Polling mode has two main uses:

• Control systems — Control system models of average model size and I/O complexity
that are executed at small sample times (Ts = 10–50 µs).

• DSP systems — Sample-based DSP system models of average model size and I/O
complexity that are executed at high sample rates (Fs = 20–100 kHz). DSP models
mainly process audio and speech data.

Polling mode for the kernel does not have the latency that interrupt mode does. It is
sometimes seen as a “primitive” or “brute force” real-time execution scheme. When a
real-time application executing in interrupt mode at a given sample time overloads the
CPU, switching to polling mode is often the only alternative.

In interrupt mode, when a CPU has finished executing the real-time code, it cedes the
rest of its execution time to the operating system. The operating system can use this time
to execute other tasks, such as background or I/O tasks. When the next execution step is
scheduled, the timer generates an interrupt, and Simulink Real-Time executes the next
step.

In polling mode, however, when the CPU has finished executing the real-time code, the
CPU does not cede time to other tasks. Instead, it does not do anything besides checking
(polling) the time value to determine whether it is time to run the next execution step.
Once this time arrives, it executes the next step and the process continues.

The latency associated with interrupts is not incurred because no timer interrupts are
involved on this core. However, one core of the target computer is occupied with running
the base rate, irrespective of how long it takes to run the actual real-time task.

The polling execution scheme does not depend on interrupt sources to notify the code to
continue calculating the next model step. The base rate of the real-time code is executed
on one core of the multicore processor, timed by the polling loop. Background tasks and
model tasks other than the base rate task are executed on the other cores. For efficiency,
put only the most critical code into the base rate task.

If you use Simulink Real-Time concurrent execution to execute your model, you can have
multiple base rate tasks. The CPU scheduler arbitrarily selects one of these tasks to run
in the polling loop.

Before considering polling mode, do the following:

5 Execution Modes

5-4

• Optimize the model execution speed — To find possible speed optimizations using
alternative blocks, use Performance Advisor or the profiler. If the model contains
continuous states, discretizing these states reduces model complexity significantly.
You can avoid a costly fixed-step integration algorithm. If continuous states cannot be
discretized, use the integration algorithm with the lowest order that still produces the
required numeric results.

• Use the fastest available CPU — Use the CPU with the highest clock rate available
for a given target computer form factor. For the desktop form factor, use a CPU with a
clock rate above 3 GHz. For a model of a mobile system (e.g., PC/104 form factor), use
a CPU with a clock rate above 1 GHz.

• Use the lowest latency I/O modules and drivers available — Many real-time
applications communicate with I/O modules over a PCI bus. Each register access
introduces a comparably high latency time. Using the lowest latency I/O modules and
drivers available is crucial.

• Consider running less critical code at a slower rate, taking advantage of the
multitasking capabilities of Simulink Real-Time.

Set Polling Mode

Polling mode is an alternative to the default interrupt mode of the kernel. The kernel on
the bootable media created by the UI allows running the real-time application in either
mode without using another boot disk.

By default, the real-time application executes in interrupt mode. To switch to polling
mode, you enable polling using a TLCOptions setting.

The following example uses xpcosc.

1 Open Simulink Real-Time Explorer.
2 Select the Properties pane for the target computer that you intend to use.
3 In the Target settings section, check that the Multicore CPU parameter is

selected.
4 Open model xpcosc.
5 In the Configuration Parameters dialog box, on the Simulink Real-Time Options

pane, set Execution mode to Real-Time.
6 In the Command Window, type:

set_param('xpcosc','TLCOptions', '-axpcCPUClockPoll=1')

 Execution Modes

5-5

7 Build and download the real-time application.

After you have downloaded the real-time application, the target display shows the
execution mode. If you want to execute the real-time application in interrupt mode again,
either remove the setting or assign 0 to the setting:

set_param('xpcosc','TLCOptions','')
set_param('xpcosc','TLCOptions','-axpcCPUClockPoll=0')

Rebuild and download the real-time application.

Restrictions on Multicore Processors

Polling mode runs only on a multicore processor target computer with multicore
processing enabled. For more information, see “Multicore Processor Configuration” on
page 8-11.

Polling mode disables interrupts on the core where the base rate task is running.
Background tasks and model tasks other than the base rate task are inactive on this
core. Tasks for Ethernet communication, target display updates, and UDP transfers run
on the other cores. Interrupts are still enabled on cores other than the one running the
polling task.

See Also
“TLC Command-Line Options” | SimulinkRealTime.utils.minimumSampleTime |
Target Settings

More About
• “Set Configuration Parameters”
• “Execution mode”
• “Performance Optimization”
• “Real-Time Application Execution Produces CPU Overloads” on page 23-5

5 Execution Modes

5-6

Real-Time Application Execution

7

Execution with User Interface Models

You can use the Simulink interface to create a custom user interface (UI) for your real-
time application. First, create a user interface model with the Simulink interface. Then,
add-on products like Simulink 3D Animation™ or Altia® Design (a third-party product).

6

Simulink Real-Time Interface Blocks to Simulink Models
In this section...
“Simulink User Interface Model” on page 6-2
“Creating a Custom Graphical Interface” on page 6-3
“To Target Block” on page 6-4
“From Target Block” on page 6-6
“Creating a Real-Time Application Model” on page 6-8
“Marking Block Parameters” on page 6-8
“Marking Block Signals” on page 6-10

Simulink User Interface Model

A user interface model is a Simulink model containing Simulink blocks from add-on
products and interface blocks from the Simulink Real-Time block library. This user
interface model can connect to a custom graphical interface using Simulink 3D
Animation or Altia products. The user interface model runs on the development
computer and communicates with your real-time application running on the target
computer using To Target and From Target blocks.

The user interface allows you to change parameters by downloading them to the target
computer, and to visualize signals by uploading data to the development computer.

Simulink 3D Animation — The Simulink 3D Animation product enables you to display a
Simulink user interface model in 3-D. It provides Simulink blocks that communicate
with Simulink Real-Time interface blocks. These blocks then communicate to a graphical
interface. This graphical interface is a virtual reality modeling language (VRML) world
displayed with a web browser using a VRML plugin.

Altia Design — Altia also provides Simulink blocks that communicate with Simulink
Real-Time interface blocks. These blocks then communicate with Altia's graphical
interface or with a web browser using the Altia ProtoPlay plugin.

6 Execution with User Interface Models

6-2

Creating a Custom Graphical Interface

The Simulink Real-Time block library provides Simulink interface blocks to connect
graphical interface elements to your real-time application. The steps for creating your
own custom user interface are:

 Simulink Real-Time Interface Blocks to Simulink Models

6-3

1 In the Simulink real-time application model, decide which block parameters and
block signals that you want to access through user interface control and display
devices.

2 Tag the block parameters in the Simulink model that you want to be connected to a
control device. See “Marking Block Parameters” on page 6-8.

3 Tag the signals in Simulink model that you want to be connected to a display device.
See “Marking Block Signals” on page 6-10.

4 In the MATLAB interface, run the function
SimulinkRealTime.utils.createInstrumentationModel to create the user
interface template model. This function generates a new Simulink model containing
only the Simulink Real-Time interface blocks (To Target and From Target) defined
by the tagged block parameters and block signals in the real-time application model.

5 To the user interface template model, add Simulink interface blocks from add-on
products (Simulink 3D Animation, Altia Design).

• You can connect Altia blocks to the Simulink Real-Time To PC Target interface
blocks. Connect the To Target blocks on the left to control devices.

• You can connect Altia and Simulink 3D Animation blocks to the Simulink Real-
Time From Target interface blocks. Connect the From Target blocks on the right
to the display devices.

You can position these blocks to your liking.
6 Start both the real-time application and the Simulink user interface model that

represents the application.

To Target Block

This block behaves as a sink and usually receives its input data from a control device.
The purpose of this block is to write a new value to a specific parameter in the real-time
application.

6 Execution with User Interface Models

6-4

This block is implemented as a MATLAB S-function. The block only changes a parameter
on the real-time application when the input value differs from the value that existed at
the last time step. This block uses the parameter downloading feature of the Simulink
Real-Time command-line interface. This block is available from the slrtlib/Displays
and Logging block sublibrary. See To Target for further configuration details.

 Simulink Real-Time Interface Blocks to Simulink Models

6-5

Note The use of To Target blocks requires a connection between the development and
target computers. Opening a model that contains these blocks or copying them to another
model takes longer than normal without a connection between the development and
target computers.

From Target Block

This block behaves like a source. Typically, you connect its output to the input of a
display device.

6 Execution with User Interface Models

6-6

Because only one numeric value per signal is uploaded during a time step, the number of
samples of a scope object is set to 1. The block uses the capability of the Simulink Real-
Time command-line interface and is implemented as a MATLAB S-function. This block is
available from the slrtlib/Displays and Logging sublibrary. See From Target for
further configuration details.

 Simulink Real-Time Interface Blocks to Simulink Models

6-7

Note The use of From Target blocks requires a connection between the development and
target computers. Opening a model that contains these blocks or copying them to another
model takes longer than normal without a connection between the development and
target computers.

Creating a Real-Time Application Model
A real-time application model is a Simulink model that describes your physical system, a
controller, and its behavior. You use this model to create a real-time application and to
specify the parameters and signals that you want to connect to a custom graphical
interface.

See “Marking Block Parameters” on page 6-8 and “Marking Block Signals” on page 6-
10 for descriptions of how to mark block properties and block signals.

Marking Block Parameters
Tagging parameters in your Simulink model allows the function
SimulinkRealTime.utils.createInstrumentationModel to create To Target
interface blocks. These interface blocks contain the parameters you connect to control
devices in your user interface model.

After you create a Simulink model, you can mark the block parameters. This procedure
uses the model xpctank as an example.

Tip The xpctank model blocks and signals contain placeholder tags illustrating the
syntax. Replace these tags with your new tags or add the new tags using the multiple
label syntax.

1 Open a Simulink model. For example, in the MATLAB Command Window, type
xpctank

2 Point to a Simulink block, and then right-click.
3 From the menu, click Properties.

A Block Properties dialog box opens.
4 In the Description box, delete the existing tag and enter a tag to the parameters for

this block.

6 Execution with User Interface Models

6-8

For example, the SetPoint block is a constant with a single parameter that
specifies the level of water in the tank. Enter the tag:

xPCTag(1)=water_level;

The tag has the following syntax:

xPCTag(1, . . . index_n)= label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:

xPCTag=label;

index_n -- Index of a block parameter. Begin numbering parameters with an
index of 1.

label_n -- Name for a block parameter that is connected to a To Target block in
the user interface model. Separate the labels with a space, not a comma.

label_1...label_n must consist of the same identifiers as C/C++ used to name
functions, variables, and so forth. Do not use names like -foo.

5 Repeat steps 1 through 3 for the remaining parameters you want to tag.

For example, for the Controller block, enter the tag:

xPCTag(1,2,3)=upper_water_level lower_water_level
 pump_flowrate;

For the PumpSwitch and ValveSwitch blocks, enter the following tags respectively:

xPCTag(2)=pump_switch;
xPCTag(1)=drain_valve;

To create the To Target blocks in a user interface model for a block with four
properties, use the following syntax:

xPCTag(1,2,3,4)=label_1label_2label_3label_4;

To create the To Target blocks for the second and fourth properties in a block with at
least four properties, use the following syntax:

xPCTag(2,4)=label_1 label_2;
6 From the File menu, click Save as. Enter a file name for your model. For example,

enter

 Simulink Real-Time Interface Blocks to Simulink Models

6-9

xpctank1

If you have not already marked block signals, your next task is to mark block signals,
and then to create the user interface template model. See “Marking Block Signals” on
page 6-10 and “Creating a Custom Graphical Interface” on page 6-3.

Marking Block Signals

Tagging signals in your Simulink model allows the function
SimulinkRealTime.utils.createInstrumentationModel to create From Target
interface blocks. These interface blocks contain the signals you connect to display devices
in your user interface model.

After you create a Simulink model, you can mark the block signals. This procedure uses
the model xpctank1 (or xpctank) as an example. See “Creating a Real-Time Application
Model” on page 6-8.

Tip The xpctank model blocks and signals can contain placeholder tags illustrating the
syntax. Replace these tags with your new tags or add the new tags using the multiple
label syntax.

You cannot tag signals on the output ports of virtual blocks, such as Subsystem and Mux
blocks. Also, you cannot tag signals on software-triggered signal output ports.

1 Open a Simulink model. For example, in the MATLAB Command Window, type:

xpctank

or

xpctank1
2 Point to a Simulink signal line, and then right-click.
3 From the menu, click Properties.

A Signal Properties dialog box opens.
4 Select the Documentation tab.
5 In the Description box, enter a tag to the signals for this line.

6 Execution with User Interface Models

6-10

For example, the block labeled TankLevel is an integrator with a single signal that
indicates the level of water in the tank. Replace the existing tag with the tag:
xPCTag(1)=water_level;

The tag has the following format syntax:
xPCTag(1, . . . index_n)=label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:
XPCTag=label:

• index_n — Index of a signal within a vector signal line. Begin numbering signals
with an index of 1.

• label_n — Name for a signal that is connected to a From Target block in the
user interface model. Separate the labels with a space, not a comma.

label_1...label_n must consist of the same identifiers as C/C++ uses to name
functions, variables, and so forth. Do not use names like -foo.

To create the From Target blocks in a user interface model for a signal line with four
signals (port dimension of 4), use the following syntax:
xPCTag(1,2,3,4)=label_1 label_2 label_3 label_4;

To create the From Target blocks for the second and fourth signals in a signal line
with at least four signals, use the following syntax:
xPCTag(2,4)=label_1 label_2;

Note Only tag signals from nonvirtual blocks. Virtual blocks are only graphical aids
(see “Nonvirtual and Virtual Blocks” (Simulink)). For example, if your model
combines two signals into the inputs of a Mux block, do not tag the output signal
from the Mux block. Instead, tag the source signal from the output of the originating
nonvirtual block.

6 From the File menu, click Save as. Enter a file name for your model. For example,
enter
xpc_tank1

If you have not already marked block parameters, your next task is to mark them. See
“Marking Block Parameters” on page 6-8. If you have already marked block signals,

 Simulink Real-Time Interface Blocks to Simulink Models

6-11

return to “Creating a Custom Graphical Interface” on page 6-3 for additional guidance on
creating a user interface template model.

6 Execution with User Interface Models

6-12

Execution Using the Target Computer
Command Line

7

Control Real-Time Application at Target Computer Command
Line

The Simulink Real-Time software provides a set of commands that you can use to
interact with the real-time application after it has been loaded to the target computer.
Using these commands, you can start and stop execution, configure and control scopes,
and tune parameters.

These commands are useful with standalone real-time applications that are not
connected to the development computer. You type commands directly from a keyboard
attached to the target computer. As you start to type, a command window appears on the
target computer screen.

The target computer commands are case-sensitive, but the arguments are not. For more
information, see “Target Computer Commands”.

To read the target computer console log, call
SimulinkRealTime.utils.getConsoleLog.

Trace Signals at Target Computer Command Line

After you have built and downloaded a real-time application to the target computer, you
can use target computer commands to create and configure scopes.

To add signals to a scope, you must specify the signals by signal number. For more
information, see “Find Signal and Parameter Indexes” on page 7-5.

1 To start the real-time application, in the command line, type:

start
2 To add a target scope (scope 2), type:

addscope 2

The Simulink Real-Time software adds another scope graphic to the target computer
monitor. The command window displays a message to indicate that the new scope
has registered.

Scope 2, created, type is target
3 To add a signal (0) to the new scope, type:

7 Execution Using the Target Computer Command Line

7-2

addsignal 2=0

The command window displays a message to indicate that the new signal has
registered.

Scope 2, signal 0 added

You can add more signals to the scope.
4 To start scope 2, type:

startscope 2

The target scope 2 starts and displays the signals you added in the default format
(graphical).

If you add a target scope from the target computer, you must start that scope
manually. If a target scope is in the model, starting the real-time application starts
that scope automatically.

5 To collapse scope 2 into an icon, type:

hide Scope 2
6 To expand scope 2 from an icon, type:

show Scope 2
7 To check the value of signal 0, type:

s0

The command window displays a message to show the value of signal 0.

S0 has value 5.1851
8 To stop scope 2, type:

stopscope 2
9 To change the number of samples (to 1000) to acquire in scope 2, type:

numsamples 2=1000

You must stop the scope before changing a scope parameter.
10 To start scope 2, type:

startscope 2

 Control Real-Time Application at Target Computer Command Line

7-3

The target scope 2 starts and displays the signal values with the updated sample
count.

11 To stop scope 2, type:

stopscope 2
12 To stop the real-time application, type:

stop

Tune Parameters at Target Computer Command Line

After you have built and downloaded a real-time application to the target computer, you
can use target computer commands to tune parameters.

To tune parameters, you must specify them by parameter number. For more information,
see “Find Signal and Parameter Indexes” on page 7-5.

1 To check the frequency of the signal generator (parameter 6) of the model xpcosc,
type:

p6

The command window displays a message to indicate that the new parameter has
registered.

p[6] is set to 20.00000
2 To change the frequency of the signal generator, type:

setpar 6=30

The command window displays a message to indicate that the new parameter has
registered.

p[6] is set to 30.00000

The target computer command setpar does not work for vector parameters.
3 To change the stop time to 1000, type:

stoptime = 1000

7 Execution Using the Target Computer Command Line

7-4

The parameter changes are made to the real-time application but not to the target
object. When you type a Simulink Real-Time command in the MATLAB Command
Window, the target computer returns the current properties of the target object.

Alias Commands at Target Computer Command Line

You can use target computer command-line variables to tag (or alias) unfamiliar
commands, parameter indexes, and signal indexes with more descriptive names.

1 To create the aliases on and off for a parameter (7) that controls a motor, type:

setvar on = p7 = 1
setvar off = p7 = 0

The target computer command window is activated when you start to type, and a
command line opens.

2 To run a command sequence, type the variable name. For example, to turn on the
motor, type:

on

The parameter P7 is changed to 1, and the motor turns on.

Find Signal and Parameter Indexes

To find signal and parameter indexes using MATLAB language:

1 Build and download the model to the target computer.
2 At the Command Line, type:

tg = slrt

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 Scopes = No Scopes defined
 NumSignals = 7
 ShowSignals = off

 Control Real-Time Application at Target Computer Command Line

7-5

 NumParameters = 7
 ShowParameters = off

3 To display signal numbers, type:

tg.ShowSignals='on'

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 Scopes = No Scopes defined
 NumSignals = 7
 ShowSignals = on
 Signals = INDEX VALUE BLOCK NAME . . .
 0 0.000000 Gain . . .
 1 0.000000 Gain1 . . .
 2 0.000000 Gain2 . . .
 3 0.000000 Integrator . . .
 4 0.000000 Integrator1 . . .
 5 0.000000 Signal Generator . . .
 6 0.000000 Sum . . .

 NumParameters = 7
 ShowParameters = off

Use the Signals INDEX number in target computer commands such as addsignal.
4 To display parameter numbers, type:

tg.ShowParameters='on'

Target: TargetPC1
 Connected = Yes
 Application = xpcosc
.
.
.
 NumParameters = 7
 ShowParameters = on
 Parameters = INDEX VALUE . . . PARAMETER NAME . . .
 0 1000000 . . . Gain . . .
 1 400 . . . Gain . . .

7 Execution Using the Target Computer Command Line

7-6

 2 1000000 . . . Gain . . .
 3 0 . . . InitialCondition . . .
 4 0 . . . InitialCondition . . .
 5 4 . . . Amplitude . . .
 6 20 . . . Frequency . . .

Use the Parameters INDEX number in target computer commands such as setpar.

See Also
SimulinkRealTime.utils.getConsoleLog

Related Examples
• “Target Computer Commands”

 See Also

7-7

Tuning Performance

• “Improve Performance of Multirate Model” on page 8-2
• “Multicore Processor Configuration” on page 8-11
• “Limits on Sample Time” on page 8-13
• “CPU Overload Options” on page 8-14
• “Execution Profiling for Real-Time Applications” on page 8-19
• “Building Referenced Models in Parallel” on page 8-26
• “Sample Time and Throughput in Real-Time Applications” on page 8-28

8

Improve Performance of Multirate Model
This example shows how to use Performance Advisor to detect blocks and parameter
settings that can reduce performance. It determines the lower limit on sample time that
does not produce a CPU overload.

Requirements

This example uses model ex_slrt_perfadv. To open this model, open the subsystem
models first:

• matlab:open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_perfadv_ref1')))

• matlab:open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_perfadv_ref2')))

• matlab:open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_perfadv')))

In ex_slrt_perfadv, the configuration parameter Fixed-step size (fundamental
sample time) is set to auto. The sample time is set in the referenced subsystems with a
MATLAB variable, Ts. You can change the base sample time by changing the value of
Ts.

In addition to the MATLAB® software requirements, the following hardware is required:

• One Windows® development computer with an Ethernet card
• One target computer
• One crossover cable for communication between the development and target

computers

Generate Baseline

Before you optimize model ex_slrt_perfadv using Performance Advisor, generate a
baseline.

1. Open ex_slrt_perfadv.

2. From the Analysis menu, click Performance Tools >> Performance Advisor.

3. Set Activity to Execute real-time application.

8 Tuning Performance

8-2

matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_slrt_perfadv_ref1')))
matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_slrt_perfadv_ref1')))
matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_slrt_perfadv_ref2')))
matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_slrt_perfadv_ref2')))
matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_slrt_perfadv')))
matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_slrt_perfadv')))

4. Under node Performance Advisor, select all of the Baseline checks except
Determine minimum sample time.

Determining the minimum sample time can be a lengthy process for a large model with a
long execution time.

5. Select node Baseline, and then click Run selected checks.

For this model, the Real-Time Performance Baseline action fails because running the
real-time application produced a CPU overload on the target computer.

6. To remove this condition, increase the sample time to a value greater than the
minimum value that does not cause a CPU overload. To find the minimum sample time,

 Improve Performance of Multirate Model

8-3

select the Determine minimum sample time check box, and then click Run this
check.

To avoid the overloads that random variations can cause, set Ts to a value above the
lower limit. For example, set it to 0.003 s.

7. In the Command Window, type:

Ts = 0.003

8. Save ex_slrt_perfadv and its reference subsystems.

8 Tuning Performance

8-4

9. Clear the Determine minimum sample time check box, select the Real-Time
Performance Baseline check box, and then click Run this check.

Perform Real-Time Checks

To perform the real-time performance checks on model ex_slrt_perfadv, first create a
baseline. Then carry out the following steps using Performance Advisor.

 Improve Performance of Multirate Model

8-5

1. Under node Performance Advisor, select all of the top-level Real-Time checks.

If you have a license for Simscape™ or its related products, such as Simscape Driveline™
and Simscape Electronics™, clear those checks. ex_slrt_perfadv contains no
Simscape blocks.

2. Select the Real-Time node, and then click Run selected checks.

8 Tuning Performance

8-6

The model is a multirate model running on a multicore target computer, but it is not
configured to use more than one core.

3. In the Solver pane under Additional options, select the check box Allow tasks to
execute concurrently on target. Select the same setting for the reference subsystems
ex_slrt_perfadv_ref1 and ex_slrt_perfadv_ref2.

4. Save ex_slrt_perfadv and its reference subsystems.

5. Select the Concurrent execution check box, and then click Run this check.

 Improve Performance of Multirate Model

8-7

6. To improve the minimum sample time, select the Determine minimum sample
time check box, and then click Run this check. The result shows a sample time less
than 0.0003 s. To avoid the overloads that random variations can cause, set Ts to a
value above the lower limit. For example, set it to 0.001 s.

7. In the Command Window, type:

Ts = 0.001

8 Tuning Performance

8-8

8. Save ex_slrt_perfadv and its reference subsystems.

Final Validation

The final validation check tests whether model ex_slrt_perfadv works after you
performed real-time performance optimizations.

1. Select the Final validation check box, and then click Run this check.

 Improve Performance of Multirate Model

8-9

2. To investigate further improvements, see Execution Profiling for Real-Time
Applications.

8 Tuning Performance

8-10

matlab:web(fullfile(docroot,'xpc/ug/profiling-target-application-execution.html'))
matlab:web(fullfile(docroot,'xpc/ug/profiling-target-application-execution.html'))

Multicore Processor Configuration
For better performance on your target computer, you can run multirate real-time
applications on multiple cores. Use this capability if your target computer has a
multicore processor and you want to take advantage of it for multirate models. Before
you consider enabling this capability, see “BIOS Settings” for the effects of BIOS settings.

The MulticoreSupport target setting is read-only and set to 'on'. Single-core target
computers still function.

To build and download multirate models on your multicore target computer:

1 Open your model in Simulink Editor.
2 Add a Rate Transition block to transition between rates.

Note Multirate models must use Rate Transition blocks. If your model uses other
blocks for rate transitions, building the model generates an error.

3 Select the Ensure data integrity during data transfer check box of the Rate
Transition block parameters.

4 Clear the Ensure deterministic data transfer (maximum delay) check box of
the Rate Transition block parameters. This setting forces the Rate Transition block
to use the most recent data available.

Note Because this box is cleared, the transferred data can differ from run to run.
5 In Simulink Editor, select View > Model Explorer.
6 In Simulink Model Explorer, right-click in the Model Hierarchy pane and select

Configuration > Add configuration for concurrent execution
7 In the new configuration, select Solver.
8 Check Enable concurrent tasking.
9 Click Configure Tasks.

See Also
Rate Transition

 Multicore Processor Configuration

8-11

More About
• “Multicore Programming with Simulink” (Simulink)

8 Tuning Performance

8-12

Limits on Sample Time
The sample time you can assign to your model is limited by the kernel and by the
complexity of your model.

The kernel enforces lower and upper bounds on sample time:
Mode Lower Bound Upper Bound
Interrupt 8e-6 s 10 s
Polling 5e-7 s 10 s

In the Solver node in the Configuration Parameters dialog box, set Fixed-step size to a
value within these bounds. If you set Fixed-step size to a value outside these bounds
and attempt to build and download the real-time application, the application load fails
with an error message.

At run time, if you attempt to set the sample time to a value outside these bounds, the
kernel prints an error message.

Within these bounds, if you specify too short a sample time for the complexity of your
model, the target computer can experience a CPU overload. To address this problem, use
the following procedure:

1 To find the minimum sample time for your model, run
SimulinkRealTime.utils.minimumSampleTime in the Command Window.

2 Change the value of Fixed-step size to a value slightly above the minimum sample
time value.

3 Rebuild and download the model.

See Also
SimulinkRealTime.utils.getConsoleLog |
SimulinkRealTime.utils.minimumSampleTime

More About
• “Real-Time Application Execution Produces CPU Overloads” on page 23-5
• “Execution Modes” on page 5-2

 Limits on Sample Time

8-13

CPU Overload Options

In this section...
“Option Behavior” on page 8-14
“Violation of xPCMaxOverloads” on page 8-16
“Violation of xPCMaxOverloadLen” on page 8-17
“Violation of xPCStartupFlag” on page 8-17

Sometimes a real-time application running on the target computer does not have enough
time to complete processing before the next time step. This condition is called a CPU
overload. An overload is registered every time an execution step cannot be executed
because a previous step is running.

For example, assume that your model sample time is 1 ms, but running a particular
model step takes 3.1 ms. This model step causes the kernel to skip three steps and
causes three overloads.

Typically, the Simulink Real-Time kernel halts model execution when it encounters a
CPU overload. However, some real-time applications can tolerate several CPU overloads
without significant loss of data, for example during start up. For such applications, you
can allow a specified number and configuration of CPU overloads. You do this using the
TLCOptions settings xPCMaxOverloads, xPCMaxOverloadLen, and xPCStartupFlag.

Note Allowing the target computer CPU to overload can cause incorrect results,
especially for multirate models. Use these TLC command-line options only for diagnosis.
When your diagnosis is complete, turn off these options.

Option Behavior

If your real-time application causes a CPU overload, it finishes the current execution
step and ignores timer interrupts. At the end of the execution step, the kernel compares
the CPU overload count to the limits defined by xPCMaxOverloads and
xPCMaxOverloadLen. If the count does not exceed the limits, the application executes at
the next step. Otherwise it stops.

The limits are:

8 Tuning Performance

8-14

• xPCMaxOverloads — Number of acceptable overloads during a real-time application
execution.

When xPCMaxOverloads is set to a value, the Simulink Real-Time software stops
execution with a CPU overload at the next overload within the same application
execution. For example, if xPCMaxOverloads is set to 3, the software stops with a
CPU overload at the fourth overload in the same application execution.

The default value of 0 means that overloads are registered on the first overload.
• xPCMaxOverloadLen — Number of acceptable overloads, in units of sample time,

within the same execution step.

When xPCMaxOverloadLen is set to a value, the software stops execution with a
CPU overload at the next overload within the same execution step. For example, if
xPCMaxOverloadLen is set to 2, the software stops execution with a CPU overload at
the third overload within the same execution step.

The default value of 0 means that overloads are registered on the first overload
within the same execution step.

Specify a value that is less than or equal to the value for xPCMaxOverloads. If
xPCMaxOverload is set to a value, for example 4, and xPCMaxOverloadLen is not
defined, the real-time application stops if one of following occurs:

• The cumulative overloads since execution start is greater than 4.
• One execution step has two overloads.

• xPCStartupFlag — Number of executions of the model at start up.

xPCStartupFlag temporarily disables CPU overload checking during the first few
model execution steps. After the model finishes the first xPCStartupFlag steps, the
software reenables CPU overload checking, which takes effect for the next execution
of the model.

The default value of 1 means that overloads are ignored on the first step. If
xPCMaxOverloads and xPCMaxOverloadLen are not set, their default setting
determines the software response to overloads.

xPCMaxOverloads and xPCMaxOverloadLen both count overloads, but over different
time spans. xPCMaxOverloads counts the CPU overloads that were seen so far in the

 CPU Overload Options

8-15

real-time application execution. xPCMaxOverloadLen counts the overloads that were
seen within one execution step.

The three options interact. When the Simulink Real-Time kernel runs the model, it
compares the number of CPU overloads to the values of xPCMaxOverloads and
xPCMaxOverloadLen. When the number of CPU overloads reaches the lower of these
two values, the kernel stops executing the model.

Suppose that you enter the following TLCOptions settings for model xpcosc.

set_param('xpcosc','TLCOptions','-axPCMaxOverloads=30
 -axPCOverLoadLen=2 -axPCStartupFlag=5')

With these settings, the software ignores CPU overloads for the first five iterations
through the model. After the first five iterations, the software allows up to 30 CPU
overloads, allowing at most two CPU overloads per model step.

You can use the blocks Set Overload Counter and Get Overload Counter to set and track
CPU overload numbers. You can use the Time Stamp Counter block to profile your model

Violation of xPCMaxOverloads

Assume that xPCMaxOverloads is 3 and xPCMaxOverloadLen is 2. The software
tolerates the first three overloads and stops executing at the fourth. The number of
overloads exceeds the maximum number allowed for real-time execution.

8 Tuning Performance

8-16

Violation of xPCMaxOverloadLen

Assume that xPCMaxOverloads is 3 and xPCMaxOverloadLen is 1. The software
tolerates the first two overloads and stops executing at the third. The second step
execution is longer than the maximum allowed overload length of one sample time.

Violation of xPCStartupFlag

Assume that xPCStartupFlag is 3. The kernel ignores CPU overloads for the first three
time steps and stops executing on the first overload in the next time step.

 CPU Overload Options

8-17

See Also
“TLC Command-Line Options” | Get Overload Counter | Set Overload Counter | Time
Stamp Counter

8 Tuning Performance

8-18

Execution Profiling for Real-Time Applications
This example shows how you can profile the task execution time and function execution
time of your real-time application running on the target computer. Using that
information, you can then tune its performance.

Profiling is especially useful if the real-time application is configured to take advantage
of multicore processors on the target computer. To profile the real-time application:

• In the Configuration Parameters for the model, enable the collection of function
execution time data during execution.

• Build, download, and execute the model.
• Start and stop the profiler.
• Display the profiler data.

Profiling slightly increases the execution time of the real-time application.

Configure Real-Time Application for Function Execution Profiling

In this section, the model is dxpcmds6t. To open this model, open the subsystem models
first:

• matlab:open_system(fullfile(matlabroot, '\toolbox', '\rtw', '\targets', '\xpc',
'\xpcdemos', '\dxpcmds_ref1'))

• matlab:open_system(fullfile(matlabroot, '\toolbox', '\rtw', '\targets', '\xpc',
'\xpcdemos', '\dxpcmds_ref2'))

• matlab:open_system(fullfile(matlabroot, '\toolbox', '\rtw', '\targets', '\xpc',
'\xpcdemos', '\dxpcmds6t'))

1 Open model dxpcmds6t.
2 In the top model, open the Configuration Parameters dialog box. Select Code

Generation >> Verification.
3 Select the Measure function execution times check box. The Measure task

execution time check box is checked and locked.

 Execution Profiling for Real-Time Applications

8-19

matlab:open_system(fullfile(matlabroot,'/toolbox','/rtw','/targets','/xpc','/xpcdemos','/dxpcmds_ref1'))
matlab:open_system(fullfile(matlabroot,'/toolbox','/rtw','/targets','/xpc','/xpcdemos','/dxpcmds_ref1'))
matlab:open_system(fullfile(matlabroot,'/toolbox','/rtw','/targets','/xpc','/xpcdemos','/dxpcmds_ref2'))
matlab:open_system(fullfile(matlabroot,'/toolbox','/rtw','/targets','/xpc','/xpcdemos','/dxpcmds_ref2'))
matlab:open_system(fullfile(matlabroot,'/toolbox','/rtw','/targets','/xpc','/xpcdemos','/dxpcmds6t'))
matlab:open_system(fullfile(matlabroot,'/toolbox','/rtw','/targets','/xpc','/xpcdemos','/dxpcmds6t'))

4. Click OK. Save model dxpcmds6t in a local folder.

Generate Real-Time Application Execution Profile

In this section, generate profile data for model dxpcmds6t on a multicore target
computer.

This procedure assumes that you have configured the target computer to take advantage
of multiple cores. It also assumes that you previously configured the model for task and
function execution profiling.

1 Open, build, and download the model.

mdl = 'dxpcmds6t';
open_system(mdl);
rtwbuild(mdl);

When you include profiling, the Code Generation Report is generated by default. It
contains links to the generated C code and include files. By clicking these links, you can
examine the generated code and interpret the Code Execution Profile Report.

8 Tuning Performance

8-20

2. Start the profiler and then execute the real-time application.

tg = slrt;
startProfiler(tg);
start(tg);
pause(1)
stopProfiler(tg);
stop(tg);

3. Display the profiler data.

 Execution Profiling for Real-Time Applications

8-21

profiler_data = getProfilerData(tg)

The Execution Profile plot shows the allocation of execution cycles across the four
processors, indicated by the colored horizontal bars.The model sections are listed in the
Code Execution Profiling Report. The cores are indicated by the numbers underneath the
bars.

8 Tuning Performance

8-22

The Code Execution Profiling Report displays model execution profile results for each
task.

• To display the profile data for a section of the model, in the Section column, click the
Membrane button next to the task.

• To display the TET data for the section in Simulation Data Inspector, click the Plot
time series data button.

• To view the section in Simulink Editor, click the link next to the Expand Tree
button.

• To view the lines of generated code corresponding to the section, click the Expand
Tree button and then click the View Source button.

 Execution Profiling for Real-Time Applications

8-23

8 Tuning Performance

8-24

4. To investigate further improvements, see Improve Performance of Multirate Model.

 Execution Profiling for Real-Time Applications

8-25

matlab:web(fullfile(docroot,'xpc/ug/improving-performance-of-multirate-model.html'))

Building Referenced Models in Parallel
The Simulink Real-Time software allows you to build referenced models in parallel on a
compute cluster. In this way, you can more quickly build and download real-time
applications to the target computer.

The following procedure assumes that you have a functioning Simulink Real-Time
installation on your development computer.

1 Identify a set of worker computers, which can be separate cores on your development
computer or computers in a remote cluster running under Windows.

2 If you intend to use separate cores on the development computer, install Parallel
Computing Toolbox on the development computer.

3 If you intend to use computers in a remote cluster:

a Install the following on each cluster computer:

• MATLAB
• Parallel Computing Toolbox
• MATLAB Distributed Computing Server™
• Simulink Real-Time
• Build compiler

Install the same compiler and compiler version at the same location as on the
development computer.

b Start and configure the remote cluster according to the instructions at
www.mathworks.se/support/product/DM/installation/ver_current.

4 Run MATLAB on the development computer.
5 In MATLAB, call the parpool function to open a parallel pool on the cluster.
6 To configure the compiler for the remote workers as a group, call the pctRunOnAll

function. For example:
pctRunOnAll('slrtsetCC(''VisualC'',
 ''C:\Program Files\Microsoft Visual Studio 9.0'')')

In this configuration, the development computer and the remote workers have
installed Microsoft Visual Studio 9.0 at C:\Program Files\Microsoft Visual
Studio 9.0.

8 Tuning Performance

8-26

https://www.mathworks.se/support/product/DM/installation/ver_current/

7 Build and download your model.

See Also
parpool | pctRunOnAll

More About
• “Reduce Build Time for Referenced Models” (Simulink Coder)

 See Also

8-27

Sample Time and Throughput in Real-Time Applications
After you design and debug the functionality of your model in Simulink, test and debug it
as a real-time application. While testing your real-time application, you can encounter
performance issues.

Real-Time Performance Factors

Real-time performance consists of sample time and throughput.

Sample time refers to the time during which the real-time application reads data into
blocks and processes it. Physical systems have an inherent sample time (the Nyquist
sample time) that is based on physical constraints. For example, when you use the
brakes in a truck, the inertia of the truck limits how fast the road speed can change. A
significant change requires about a second. Therefore, the speedometer does not need to
sample the road speed more often than every tenth of a second.

If the data changes significantly between samples taken at the inherent sample time,
sample times longer than that rate can miss those changes. If the data includes
undesirable noise, sample times shorter than the inherent sample time can capture that
noise.

Throughput refers to how much data the real-time application can process without a
CPU overload in a given sample time. Throughput is limited by the resources that are
available from the target computer. Sample times that are too short can overload the
target computer CPU and stop execution.

For more information, see:

• “Target Computer Requirements”
• “Sample Times in Systems” (Simulink)

Resources

The target computer system resources that affect a real-time application include:

• CPU cycles available on single or multicore systems
• Target computer RAM access speed
• RAM available for RAM disk

8 Tuning Performance

8-28

• Backplane I/O channel bandwidth and latency
• Disk storage bandwidth and latency

A multicore target computer can improve throughput and sample time. A multicore
computer contains multiple CPUs, or cores, that share the processing load. In a four-core
target computer, for example, the following tasks can happen simultaneously on different
cores:

• Execute a referenced model
• Acquire data through an I/O channel
• Log results to a RAM disk
• Communicate with the development computer

The strategy that you use to improve throughput depends on your application system
requirements.
Application System
Requirement

Hardware Capabilities Modeling Style Available Tools

Heavy sensor and
effector I/O

Fast I/O channels Simulink Real-Time
profiler

Heavy real-time
computation

• Additional
multicore
processors

• Faster multicore
processors

• Faster RAM
speed

Polling mode • Simulink
Performance
Advisor

• Minimum sample
time function

 Sample Time and Throughput in Real-Time Applications

8-29

Application System
Requirement

Hardware Capabilities Modeling Style Available Tools

Reference models
with different
inherent rates

Multicore processors • Rate transition
blocks

• Trade off
deterministic
data transfer for
data transfer
speed

• Concurrent
execution options

• Reference model
task mapping

Simulink
Performance Advisor

Real-time
applications
connected by
network

• Multiple target
computers

• Fast network
switches

Multiple real-time
applications that use
network blocks for
communication

• Simulink Real-
Time profiler

• Network analyzer

Data logging • Large fast hard
drive

• Large RAM disk

• Selective marking
of signals for
capture

• File scopes

Simulation Data
Inspector in buffered
mode

Low-level
mechanical and
electronic control

FPGA HDL Workflow
Advisor

Improving Performance with Concurrency
Whether you can use concurrency to improve real-time performance depends on the
model. For example, a model that has heavy data traffic between referenced models is
limited by data propagation and not by data processing. For more information, see:

• “Multicore Programming with Simulink” (Simulink)
• “Limitations with Multicore Programming in Simulink” (Simulink)

To use concurrency, first convert the blocks at the root level of your model into MATLAB
System blocks or into models that are referenced with Model blocks. Do not use
Subsystem blocks.

8 Tuning Performance

8-30

Simulink provides concurrency settings in the Solver pane, under Additional options:

• Allow tasks to execute concurrently on target — 'on' (default) or 'off'. When
this parameter is 'on' (the default), the kernel allocates tasks to the next available
CPU core. For most models, use the default value.

When Allow tasks to execute concurrently on target is 'off', the parameter
Treat each discrete rate as a separate task is available. When Treat each
discrete rate as a separate task is 'off', the real-time application executes in
single-tasking mode. In single-tasking mode, the application does not take advantage
of a multicore target computer.

In a future release, single-tasking mode will not work for multirate Simulink Real-
Time models.

• Enable explicit model partitioning for concurrent behavior — 'on' or 'off'
(default). This parameter is available only if Allow tasks to execute concurrently
on target is 'on' and you click Configure tasks.

This scenario shows how to use the inherent sample time of a model and concurrency to
improve the sample time and throughput of a model. As frequently happens during
prototyping, the original version is a single-rate model. Using Simulink Performance
Advisor and the profiler, this scenario iterates through these tasks:

• Eliminating CPU overloads while executing in the required sample time range
• Converting the single-rate model to multirate by using the design specification
• Improving multirate performance by using concurrency with implicit partitioning
• Refactoring a multirate model to reduce the CPU requirements of individual

referenced models
• Improving multirate performance by using concurrency with explicit partitioning

At each stage, you view the allocation of single-rate and multirate models among the
cores of a multicore target computer by using the Simulink Real-Time profiler functions.

Prerequisites

This scenario assumes that you can:

1 Open Simulink Real-Time Explorer.
2 Start the target computer.

 Sample Time and Throughput in Real-Time Applications

8-31

3 Connect Explorer to the target computer.
4 Build and download a real-time application to the target computer.
5 Execute a real-time application on the target computer.

For more information, see Related Topics.

Single-Rate Model

You implemented the basic functionality as a single-rate model. To expedite tuning the
sample time, you used variable Ts to define the base sample time for the constant blocks
in the ref1 and ref2 referenced models.

You debugged the model at a sample time of Ts = 1.0e-3 s. To meet its real-time
performance requirement, this model must achieve a base sample time in the range
1.0e-4 ≤ Ts ≤ 3.0e-4 while running on a four-core target computer.

Test Against Requirement

To test the model , set its base sample time to the top of the required range, 3.0e-4 s.

1 To open this model, open these files in sequence:

a open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_single_rate_ref1')))

b open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_single_rate_ref2')))

c open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_single_rate')))

To view the sample time legend, right-click in Simulink Editor and click Sample
Time Display > All. For a single-rate model, the top-level sample time legend color
applies to all referenced models.

2 Set Ts = 3.0e-4.
3 Build, download, and execute the real-time application.

The real-time application overloads the CPU. The target computer does not have
enough CPU cycles to completely execute the model at the basic sample time.

8 Tuning Performance

8-32

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_single_rate_ref1')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_single_rate_ref1')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_single_rate_ref2')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_single_rate_ref2')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_single_rate')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_single_rate')))

Determine Minimum Sample Time

Because the CPU overloaded, you cannot take a baseline until you have determined the
minimum sample time.

1 Open the Analysis > Performance Tools menu and run the Simulink Performance
Advisor.

2 Select the Execute real-time execution activity.
3 Select and run the baseline checks other than Real-Time Performance Baseline,

including Determine minimum sample time.
4 Evaluate the smallest sample time this model can attain, about 2.2e-3.
5 To avoid CPU overloads caused by random variations, set Ts to a value about 5%

higher than that sample time, or Ts = 2.3e-3.

Determine Baseline

Using Performance Advisor, establish a baseline and evaluate whether improvement is
possible for this version of the model.

1 In Performance Advisor, run Real-Time Performance Baseline.

The run succeeds and produces a pie chart.

 Sample Time and Throughput in Real-Time Applications

8-33

This chart shows two usage allocations, BaseRate and Background. The BaseRate
allocation shows the execution of the single-rate real-time application as one task.
The Background allocation shows the execution of the kernel tasks, such as
accessing the target computer disk for datalogging or communicating between the
development and target computers.

8 Tuning Performance

8-34

This example uses a four-core target computer, but the real-time application only
uses a quarter of the available CPU cycles. BaseRate has a low margin before CPU
overload, about 5%. To improve performance, the real-time application must use
more of the available CPU resources.

2 As a best practice, run all of the Real-Time checks except Simscape checks.

The Real-Time checks pass. This version of the model cannot be improved further.

Evaluate Task Allocation

Evaluate the allocation of tasks across the 4 cores.

1 In the Command Window, run the profiler:

tg = slrt;
startProfiler(tg);
start(tg);
stop(tg);

The stop function also calls the stopProfiler function.
2 Retrieve the profiler data and display the results:

profiler_data = getProfilerData(tg);
plot(profiler_data);

To skip initialization, start the display at 3*Ts. To show a representative example of
concurrency, use a range of 4*Ts.

 Sample Time and Throughput in Real-Time Applications

8-35

In the profiler display, the highlighted numbers within each task bar give the task
number. Task number 2 shows how much of the available time is being used by the
BaseRate task. Task number 1 is the timer interrrupt, part of the background
tasks.

8 Tuning Performance

8-36

The labels under the task bars give the CPU core on which each task runs. Because
this is a single-rate model, the referenced model tasks run one after the other on core
2 at the same rate after each timer interrupt.

The execution bar at one timer interrupt almost fills the time until the next timer
interrupt. If the execution bar at one interrupt overlaps with the execution bar at the
next, the target computer CPU overloads and stops execution.

Multirate Model: Concurrency On, Implicit Partitioning

At this stage of the optimization process, the current value of Ts = 2.3e-3, which is
outside the required range of 1.0e-4 ≤ Ts ≤ 3.0e-4.

To improve the sample time of the real-time application, start with the inherent rates of
the model. After converting the single-rate model to a multirate model, you can turn on
concurrency with implicit partitioning.
Convert to Multirate Model

From the design specification, determine which parts of the model can run at lower rates
and which cannot.

1 Specify rates for parts of the model.

As a best practice, specify rates that are multiples of a single base rate. In this
model, the valid rates are multiples of Ts: Ts, 2*Ts, 3*Ts, and 4*Ts.

2 In the original model, Ref1/Out4 connects directly to Ref2/In1. Because Ref1/
Out4 and Ref2/In1 have different rates, add a Rate Transition block to Ref1.

3 Configure the Rate Transition block:

• Set the Ensure data integrity during data transfer parameter.
• Clear the Ensure deterministic data transfer (maximum delay) parameter.

Data transfers between triggered tasks cannot require deterministic data
integrity.

4 To open this model, open these files in sequence:

a open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_ref1')))

b open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_ref2')))

 Sample Time and Throughput in Real-Time Applications

8-37

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_ref1')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_ref1')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_ref2')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_ref2')))

c open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate')))

For this model, the sample time legend colors for the top level also apply to the Ref1
referenced model. A separate set of sample time legend colors appears for the Ref2
referenced model.

Configure Implicit Partitioning

To configure implicit partitioning, turn on task-level concurrency and take the defaults.

1 Open the Configuration Parameters dialog box for the top-level model.
2 In the Solver pane, under Additional options, set the Allow tasks to execute

concurrently on target parameter.
3 Click Simulation > Update Diagram.

Test Against Requirement

To test the model , set its base sample time to the top of the required range, 3.0e-4 s.

1 Set Ts = 3.0e-4.
2 Build, download, and execute the real-time application.

The real-time application overloads the CPU. The target computer does not have
enough CPU cycles to completely execute the model at the basic sample time.

Determine Minimum Sample Time

Because the CPU overloaded, you cannot take a baseline until you have determined the
minimum sample time.

1 Open the Analysis > Performance Tools menu and run the Simulink Performance
Advisor.

2 Select the Execute real-time execution activity.
3 Select and run the baseline checks other than Real-Time Performance Baseline,

including Determine minimum sample time.
4 Evaluate the smallest sample time this model can attain, about 4.2e-4.
5 To avoid CPU overloads caused by random variations, set Ts to a value about 5%

higher than that sample time, or Ts = 4.4e-4.

8 Tuning Performance

8-38

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate')))

Determine Baseline

Using Performance Advisor, establish a baseline and evaluate whether improvement is
possible for this version of the model.

1 To take a baseline for optimization, run Real-Time Performance Baseline.

The run succeeds and produces a pie chart.

 Sample Time and Throughput in Real-Time Applications

8-39

The CPU core usage has improved, but the real-time application only uses half of the
available CPU cycles. Also, SubRate2 has a low margin before CPU overload, about
5%. The real-time application needs better load balancing to improve the base sample
time and to make its execution more likely to succeed.

2 As a best practice, run all of the Real-Time checks except Simscape checks.

The Real-Time checks pass. This version of the model cannot be improved further.

Evaluate Task Allocation

Evaluate the allocation of tasks across the 4 cores.

1 In the Command Window, run the profiler:

tg = slrt;
startProfiler(tg);
start(tg);
stop(tg);

2 Retrieve the profiler data and display the results:

profiler_data = getProfilerData(tg);
plot(profiler_data);

To skip initialization, start the display at 3*Ts. To show a representative example of
concurrency, use a range of 4*Ts.

8 Tuning Performance

8-40

The execution bars for SubRate2, the task with the largest CPU requirement,
almost overlap. Concurrency is in full operation as of time tick 1.32e-3.

Refactored Multirate Model: Concurrency On, Explicit Partitioning

At this stage of the optimization process, the current value of Ts = 4.4e-4, which is
still outside the required range of 1.0e-4 ≤ Ts ≤ 3.0e-4.

 Sample Time and Throughput in Real-Time Applications

8-41

You can improve the performance of your real-time application by explicitly balancing
the load of the different processing nodes in the multicore target computer. This process
involves iteratively refactoring the model, moving tasks between different processing
nodes, and testing the result. For more information, see “Concepts in Multicore
Programming” (Simulink).

Before refactoring a model, note which tasks of a system depend on the output of other
tasks. The data dependency between tasks determines their execution order within a
time step. Two or more partitions containing data dependencies in a cycle creates a data
dependency loop, also known as an algebraic loop. To detect these loops, in the
Diagnostics pane, set the Algebraic loop parameter to error. Simulink identifies
algebraic loops during execution, displays an error message, and highlights the portion of
the block diagram that comprises the loop. Remove these loops from your model. For
more information, see “Algebraic loop” (Simulink).

Refactor Model

In this scenario, the multirate model consists of two referenced models, each containing
many signals to process during each sample time. With implicit partitioning, each
referenced model task is assigned to a core. To improve interleaving among CPU cores,
divide each referenced model in half. Each half contains half the number of signals in the
original referenced model. This configuration produces the same number of referenced
models as cores with each referenced model having smaller CPU requirements than the
original.

1 Split the Ref1 referenced models into two referenced models, Ref1A and Ref1B.
Each block has half the number of signals as Ref1.

2 Split the Ref2 referenced models into two referenced models, Ref2A and Ref2B.
Each block has half the number of signals as Ref2.

3 To open this model, open these files in sequence:

a open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_partition_ref1A')))

b open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_partition_ref1B')))

c open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_partition_ref2A')))

d open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_partition_ref2B')))

8 Tuning Performance

8-42

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_partition_ref1A')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_partition_ref1A')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_partition_ref1B')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_partition_ref1B')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_partition_ref2A')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_partition_ref2A')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_partition_ref2B')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_partition_ref2B')))

e open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_partition')))

Configure Explicit Partitioning

To configure explicit partitioning, turn on task-level concurrency and explicitly configure
the tasks for each referenced model.

1 To increase the CPU interleaving of real-time tasks, open the Configuration
Parameters dialog box for the top-level model.

2 In the Solver pane, set the Allow tasks to execute concurrently on target
parameter.

3 Under Configure Tasks, set the Enable explicit model partitioning for
concurrent behavior parameter.

4 Under Concurrent Execution > Tasks and Mapping, open CPU > Periodic.
5 Create periodic tasks for each rate in each referenced model. Name the tasks

Model1_R1, Model1_R2, and so on.

You use a periodic trigger to represent periodic interrupt sources, such as a timer.
The periodicity of the trigger is either the base rate of the task or the period of the
trigger. See “Concepts in Multicore Programming” (Simulink).

6 Assign each periodic task to the corresponding rate in each referenced model.

• Model1, Model3 — Four tasks of rates Ts, 2*Ts, 3*Ts, and 4*Ts.
• Model2, Model4 — Three tasks of rates Ts, 3*Ts, and 4*Ts

At the end of this process, the Concurrent Execution window looks like the figure.

 Sample Time and Throughput in Real-Time Applications

8-43

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_partition')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_partition')))

7 In the Verification tab, clear the MAT-file logging check box.
8 Click Simulation > Update Diagram.

For this model, the sample time legend colors for the top level also apply to the Ref1A
and Ref1B referenced models. A separate set of sample time legend colors appears for
the Ref2A and Ref2B referenced models.
Test Against Requirement

To test the model , set its base sample time to the top of the required range, 3.0e-4 s.

8 Tuning Performance

8-44

1 Set Ts = 3.0e-4.
2 Build, download, and execute the real-time application.

The real-time application runs. Your model has met the basic sample-time
requirement.

Determine Minimum Sample Time

To evaluate where this version of the model falls in the sample-time range and how much
margin it has:

1 Open the Analysis > Performance Tools menu and run the Simulink Performance
Advisor.

2 Select the Execute real-time execution activity.
3 Select and run the baseline checks other than Real-Time Performance Baseline,

including Determine minimum sample time. You cannot take a baseline until
you have determined the minimum sample time.

4 Evaluate the smallest sample time this model can attain, about 2.6e-4.
5 To avoid CPU overloads caused by random variations, set Ts to a value about 5%

higher than that sample time, or Ts = 2.7e-4.

Determine Baseline

Using Performance Advisor, establish a baseline and evaluate whether improvement is
possible for this version of the model.

1 To take a baseline, run Real-Time Performance Baseline.

The run succeeds and produces output like the figure.

 Sample Time and Throughput in Real-Time Applications

8-45

8 Tuning Performance

8-46

At the lowest achievable sample time, this real-time application uses three-quarters
of the available CPU cycles. The smallest margin before CPU overload is about 27%,
which is an improvement over the 5% margin in the previous version.

2 As a best practice, run all of the Real-Time checks except Simscape checks.

The Real-Time checks pass. This version of the model cannot be improved further.

Evaluate Task Allocation

Evaluate the allocation of tasks across the 4 cores.

1 In the Command Window, run the profiler:

tg = slrt;
startProfiler(tg);
start(tg);
stop(tg);

2 Retrieve the profiler data and display the results:

profiler_data = getProfilerData(tg);
plot(profiler_data);

To skip initialization, start the display at 3*Ts. To show a representative example of
concurrency, use a range of 4*Ts.

 Sample Time and Throughput in Real-Time Applications

8-47

8 Tuning Performance

8-48

The Model*_R3 tasks start running on all four processors, but Model*_R1 tasks
preempt them. The overhead of preemption limits the performance improvement
that you can achieve by using concurrency alone.

Additional Optimizations

In the model scenario, the change that produced the greatest improvement was going
from single-rate to multirate execution with the default task mapping (over 5X
improvement). The other optimization produced less improvement (1.5X), but was
required to reach the required sample time of 1.0e-4 ≤ Ts ≤ 3.0e-4.
Optimization Achievable Sample Time Ts
SIngle-rate 2.3e-3
Multirate, implicit task mapping 4.4e-4
Partitioned multirate, explicit task
mapping

2.7e-4

To gain more improvement, consider the following optimizations.

Isolated Rate Transitions

If a multirate model contains many rate-transition blocks covering a few overlapping
rates, consider extracting each similar rate transition into a new referenced model. You
can then set the Enable explicit model partitioning for concurrent behavior
parameter and create an explicit periodic task mapping for the new referenced models. If
a referenced model does not contain a block with the base-rate sample time, add a
separate base-rate task to the mapping table for that model.

For this model, factoring out rate transitions provides only a small improvement. To open
ex_slrt_multirate_refactor, open these files in sequence:

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref1A')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref2A')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref3A')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref1B')))

 Sample Time and Throughput in Real-Time Applications

8-49

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref1A')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref1A')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref2A')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref2A')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref3A')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref3A')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref1B')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref1B')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref2B')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor_ref3B')))

• open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_multirate_refactor')))

Explicit Partitioning of Single-Rate Model

If the model is a single-rate model with a high computational requirement for each
referenced model without data dependencies between them, consider setting the Enable
explicit model partitioning for concurrent behavior parameter. You can then
create an explicit periodic task mapping for each of the referenced models.

The improvement that you can achieve by explicitly mapping the tasks of a single-rate
model is limited by the number of cores. For example, if you have four cores and the
tasks run at a single rate, the most you can achieve is a 4X improvement in CPU usage.

Function Execution Optimization

To find additional optimizations, consider running the Simulink Real-Time profiler with
function execution time logging enabled (see “Profiling and Optimization”). The profiler
provides detailed, low-level information about the CPU tasks. You can then identify
bottleneck blocks and replace or improve them.

FPGA Coprocessing

In cases where you cannot meet your system requirements by other optimization
methods, consider embedding the crucial algorithms in an FPGA by using HDL Workflow
Advisor.

See Also
Enable Profiler | Profiler Data | Rate Transition | SimulinkRealTime.-
target.getProfilerData | SimulinkRealTime.target.resetProfiler |
SimulinkRealTime.target.startProfiler | SimulinkRealTime.-
target.stopProfiler | SimulinkRealTime.utils.minimumSampleTime

8 Tuning Performance

8-50

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref2B')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref2B')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref3B')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor_ref3B')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_multirate_refactor')))

More About
• “Simulink Real-Time Performance Advisor Checks”
• “Getting Started with Simulink Real-Time”
• “Improve Simulation Performance Using Performance Advisor” (Simulink)
• “Target Computer Requirements”
• “Multicore Programming with Simulink” (Simulink)
• “Sample Times in Systems” (Simulink)
• “Limitations with Multicore Programming in Simulink” (Simulink)
• “Concepts in Multicore Programming” (Simulink)
• “Improve Performance of Multirate Model” on page 8-2
• “Profiling and Optimization”
• “FPGA Subsystem Configuration”
• “Algebraic loop” (Simulink)

 See Also

8-51

Execution with MATLAB Scripts

53

Real-Time Applications and Scopes in the
MATLAB Interface

• “Real-Time Application Objects” on page 9-2
• “Real-Time Scope Objects” on page 9-7
• “Acquire Signal Data with File Scopes” on page 9-12
• “Acquire Signal Data into Dynamically Named Files” on page 9-14
• “Scope Trigger Configuration” on page 9-17
• “Pretriggering and Posttriggering of Scopes” on page 9-18
• “Trigger One Scope with Another Scope” on page 9-20
• “Minimize Data Gaps with Two Scopes” on page 9-27

9

Real-Time Application Objects
The Simulink Real-Time software uses a SimulinkRealTime.target object to
represent the target kernel and your real-time application. Use real-time application
object functions to run and control real-time applications on the target computer with
scope objects to collect signal data.

An understanding of the real-time application object properties and functions helps you
to control and test your real-time application on the target computer.

A real-time application object on the development computer represents the interface to a
real-time application and the kernel on the target computer. You use real-time
application objects to run and control the real-time application.

When you change a real-time application object property on the development computer,
information is exchanged with the target computer and the real-time application.

To create a real-time application object:

1 Build a real-time application. The Simulink Real-Time software creates a real-time
application object during the build process.

2 Use the real-time application object function SimulinkRealTime.target. In the
MATLAB Command Window, type:

tg = SimulinkRealTime.target

A SimulinkRealTime.target object has properties and functions specific to that
object. The real-time application object functions allow you to control a real-time
application on the target computer from the development computer. You enter real-time
application object functions in the MATLAB window on the development computer, or
you can use MATLAB code scripts. To access the help for these functions from the
command line, use the syntax:

doc SimulinkRealTime.target/function_name

If you want to control the real-time application from the target computer, use target
computer commands (see “Control Real-Time Application at Target Computer Command
Line” on page 7-2).

9 Real-Time Applications and Scopes in the MATLAB Interface

9-2

Create Real-Time Application Objects

To create a real-time application object:

1 Build a real-time application. The Simulink Real-Time software creates a real-time
application object during the build process.

2 To create a specific real-time application object, or to create multiple real-time
application objects in your system, use the real-time application object function
SimulinkRealTime.target with arguments. For example, to create a real-time
application object for target TargetPC1, in the MATLAB Command Window, type:

tg = SimulinkRealTime.target('TargetPC1')

The resulting real-time application object is tg.

Using this function clarifies which application object is associated with a particular
target computer.

3 To check a connection between development and target computers, use the target
function SimulinkRealTime.target.ping. For example, type:

ping(tg)
4 To create a real-time application object for the default target computer, use the

creation function SimulinkRealTime.target without arguments. For example, in
the MATLAB Command Window, type:

tg = SimulinkRealTime.target

The resulting real-time application object is tg.

Note If you use SimulinkRealTime.target without arguments to create a real-time
application object, use Simulink Real-Time Explorer to configure your target computer.
Doing so clarifies which real-time application object is associated with a particular target
computer.

Display Application Object Properties

To monitor a real-time application, list the real-time application object properties. The
properties include the execution time and the average task execution time.

 Real-Time Application Objects

9-3

After you build a real-time application and real-time application object from a Simulink
model, you can list the real-time application object properties. This procedure uses the
default real-time application object name tg as an example.

1 In the MATLAB window, type:

tg = slrt;

The current real-time application properties are uploaded to the development
computer. MATLAB displays a list of the real-time application object properties with
the updated values.

The real-time application object properties for TimeLog, StateLog, OutputLog, and
TETLog are not yet updated.

2 Type:

start(tg)

The Status property changes from stopped to running. The log properties change
to Acquiring.

For a list of real-time application object properties with a description, see
SimulinkRealTime.target.

Set Real-Time Application Object Property Values

You can change a real-time application object property by using the Simulink Real-Time
dot notation on the development computer. (For limitations on target property changes to
sample times, see “Alternative Configuration and Control Methods”.)

With the Simulink Real-Time software, you can use object property syntax to change the
real-time application object properties.

target_object.property_name = new_property_value

For example, to change the stop time for the real-time application running on target tg,
in the MATLAB window, type:

tg = slrt;
tg.StopTime = 1000

9 Real-Time Applications and Scopes in the MATLAB Interface

9-4

When you change a real-time application object property, the new property value is
downloaded to the target computer. The Simulink Real-Time kernel then receives the
information and changes the behavior of the real-time application.

To get a list of the writable properties, type target_object. The build process assigns
the default name of the real-time application object to tg.

Get Real-Time Application Object Property Values

You can list a property value in the MATLAB window or assign that value to a MATLAB
variable. With the Simulink Real-Time software, you can use object property syntax.

target_object.property_name

For example, to access the stop time for the real-time application running on target tg,
in the MATLAB window, type:

tg = slrt;
endrun = tg.StopTime

To get a list of readable properties, type target_object. Without assignment to a
variable, the property values are listed in the MATLAB window.

Signals are not real-time application object properties. To get the value of the
Integrator1 signal from the model xpcosc, in the MATLAB window, type:

outputvalue = getsignal(tg, 0)

0 is the signal index.

Note Function names are case-sensitive. Type the entire name. Property names are not
case-sensitive. You do not need to type the entire name, as long as the characters that
you do type are unique for the property.

Use Real-Time Application Object Functions

To run a real-time application object function, use the
function_name(target_object, argument_list) syntax.

 Real-Time Application Objects

9-5

Unlike properties, for which partial but unambiguous names are permitted, you must
enter function names in full, in lowercase. For example, to add a target scope with a
scope index of 1, in the MATLAB window, type:

tg = slrt;
addscope(tg,'target',1)

9 Real-Time Applications and Scopes in the MATLAB Interface

9-6

Real-Time Scope Objects
The Simulink Real-Time software uses scope objects to represent scopes on the target
computer. Use scope object functions to view and collect signal data.

The Simulink Real-Time software uses scopes and scope objects as an alternative to
using Simulink scopes and external mode. A scope can exist as part of a Simulink model
system or outside a model system.

• A scope that is part of a Simulink model system is a Scope block. You add a Simulink
Real-Time Scope block to the model, build a real-time application from that model,
and download that application to the target computer.

• A scope that is outside a model is not a Scope block. For example, if you create a scope
with the SimulinkRealTime.target.addscope function, that scope is not defined
within the model. After the model has been downloaded and initialized, you add this
scope to the model.

This difference affects when and how the scope executes to acquire data.

Scope blocks inherit sample times. A Scope block in the root model or a normal
subsystem executes at the sample time of its input signals. A Scope block in a
conditionally executed (triggered/enabled) subsystem executes whenever the containing
subsystem executes. In the latter case, the scope can acquire samples at irregular
intervals.

A scope that is not part of a model executes at the base sample time of the model. For
signals with a sample time longer than the base sample time, it acquires repeated
identical samples. For example, assume that the model base sample time is 0.001 and
that you dynamically add to the scope a signal whose sample time is 0.005. The scope
acquires five identical samples for this signal at each signal sample time.

Understanding the structure of scope objects helps you to use the MATLAB command-
line interface to view and collect signal data. A scope object on the development computer
represents a scope on the target computer. You use scope objects to observe the signals
from your real-time application during a real-time run or analyze the data after the run
is finished.

To create a scope object:

• Add a Simulink Real-Time Scope block to your Simulink model. To determine the
scope type, set the Scope type parameter. To create a scope on the target computer,

 Real-Time Scope Objects

9-7

build and download the model. Use the real-time application object function
SimulinkRealTime.target.getscope to create a scope object on the development
computer.

• Build and download a model. Use the real-time application object function
SimulinkRealTime.target.addscope to create a scope on the development
computer. To determine the scope type, pass one of the following values as input
parameter: target, host, or file.

Upon creation, the Simulink Real-Time software assigns the required scope object class
for the scope type: SimulinkRealTime.targetScope,
SimulinkRealTime.hostScope, or SimulinkRealTime.fileScope.

A scope object has properties and functions specific to its scope type, as well as properties
and functions in common with the other scopes. The scope object functions allow you to
control scopes on your target computer.

To control the real-time application from a target computer keyboard, use target
computer commands (see “Control Real-Time Application at Target Computer Command
Line” on page 7-2).

Display Scope Object Properties for One Scope

To list the properties of a single scope object, sc1, in the MATLAB window, type:

tg = slrt;
sc1 = getscope(tg,1)

MATLAB creates the scope object sc1 from a previously created scope.

The current scope properties are uploaded to the development computer. MATLAB
displays a list of the scope object properties with the updated values. Because sc1 is a
vector with a single element, you could also type sc1(1) or sc1([1]).

Note Only scopes of type host store data in the properties scope_object.Time and
scope_object.Data.

For a list of real-time application object properties with a description, see the target
function SimulinkRealTime.target.

9 Real-Time Applications and Scopes in the MATLAB Interface

9-8

Display Scope Object Properties for Multiple Scopes
To list the properties of the current scope objects associated with the real-time
application object tg, in the MATLAB window, type:

tg = slrt;
getscope(tg)

SimulinkRealTime.target.getscope supports vector arguments. For example, to list
the first and third scopes, type:

getscope(tg,[1,3])

To assign a list of current scopes to a variable, type:

allscopes = getscope(tg)

For a list of real-time application object properties, see the target function
SimulinkRealTime.target.

Set Scope Property Values
With the Simulink Real-Time software, you can use object property syntax to set a single
scope object property.

scope_object.property_name = new_property_value

For example, to change the trigger mode for scope 1, in the MATLAB window, type:

tg = slrt;
sc1 = getscope(tg, 1);
sc1.triggermode = 'signal'

You cannot use dot notation to set vector object properties. To assign a property value to
a vector of scopes, use the set function. For example, assume that you have two scopes, 1
and 2. First assign a vector containing these scopes to the variable sc12:

sc12 = getscope(tg, [1,2]);

To set the NumSamples property of these scopes to 300, type:

set(sc12, 'NumSamples', 300);

To get a list of the writable properties, type scope_object.

 Real-Time Scope Objects

9-9

Note

• You cannot set a property of a vector of scopes to a vector of property values. For
example, you cannot set property NumSamples of vector sc12 to [100,200].

• Function names are case-sensitive. Type the entire name. Property names are not
case-sensitive. You do not need to type the entire name, as long as the characters that
you do type are unique for the property.

Get Scope Property Values
You can list a property value in the MATLAB window or assign that value to a MATLAB
variable. With the Simulink Real-Time software, you can use object property syntax to
get scope property values.
scope_object_vector(index_vector).property_name

For example, to get the number of samples from scope 1, in the MATLAB window, type:

tg = slrt;
sc1 = getscope(tg, 1);
sc1.NumSamples

To get the values of vector object properties set using the set function, you can use the
corresponding get function. For example, assume that you have two scopes, 1 and 2,
with a NumSamples property of 300.

First assign a vector containing these scopes to the variable sc12.

sc12 = getscope(tg, [1,2]);

To get the value of NumSamples for these scopes, type:

get(sc12, 'NumSamples')

You get a result like:
ans =
 [300]
 [300]

Although you cannot use dot notation to set the values of vector object properties, you
can use it to get those values:

9 Real-Time Applications and Scopes in the MATLAB Interface

9-10

sc12.NumSamples

You get a result like:

ans =
 300

ans =
 300

To get a list of readable properties, type scope_object. The property values are listed
in the MATLAB window.

Note Function names are case-sensitive. Type the entire name. Property names are not
case-sensitive. You do not need to type the entire name, as long as the characters that
you do type are unique for the property.

Use Scope Object Functions

Use the function syntax to run a scope object functions:

function_name(scope_object, argument_list)

Unlike properties, for which partial but unambiguous names are permitted, enter
function names in full, in lowercase. For example, to add signals to the first scope in a
vector containing the current scopes, in the MATLAB window, type:

allscopes = getscope(tg)
addsignal(allscopes(1), [0,1])

 Real-Time Scope Objects

9-11

Acquire Signal Data with File Scopes
You can acquire signal data into a file on the target computer. To do so, you can include a
real-time file scope in your Simulink Real-Time model. Alternatively, after you build the
real-time application and download it to the target computer, you can add a file scope to
that application.

For example, to add a file scope named sc to the real-time application, and to add signal
4 to that scope:

1 In the MATLAB window, type:

tg = slrt;
sc = addscope(tg, 'file')

The Simulink Real-Time software creates a file scope for the real-time application.
2 To add signal 4, type:

addsignal(sc, 4)
3 Caution Before starting the scope, copy previously acquired data to the development

computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

To start the scope, type:

start(sc)
4 To start the real-time application, type:

start(tg)

The Simulink Real-Time software adds signal 4 to the file scope. When you start the
scope and the real-time application, the scope saves the signal data for signal 4 to a file,
by default named C:\data.dat.

• For more information on file scopes, see “Configure Real-Time File Scope Blocks” on
page 4-93.

• To retrieve the file programmatically from the target computer for analysis, see
“Using SimulinkRealTime.fileSystem Objects” on page 10-4.

9 Real-Time Applications and Scopes in the MATLAB Interface

9-12

• To acquire signal data into multiple files, see “Acquire Signal Data into Dynamically
Named Files” on page 9-14.

 Acquire Signal Data with File Scopes

9-13

Acquire Signal Data into Dynamically Named Files
You can acquire signal data into multiple, dynamically named files on the target
computer. For example, you can acquire data into multiple files to examine one file while
the scope continues to acquire data into other files.

To acquire data into multiple files, you can include a real-time file scope in your
Simulink Real-Time model. Alternatively, after you build a real-time application and
download it to the target computer, you can add a file scope to that application. You can
then configure that scope to log signal data to multiple files.

For example, configure a file scope named sc to the real-time application. The file scope
has these characteristics:

• Logs signal data into up to nine files whose sizes do not exceed 4096 bytes.
• Creates files whose names contain the character vector file_.dat.
• Contains signal 4.

1 In the MATLAB window, type:

tg = slrt;
tg.StopTime = Inf;

This parameter value directs the real-time application to run indefinitely.
2 To add a file scope, type:

sc = addscope(tg, 'file');
3 To enable the file scope to create multiple log files, type:

sc.DynamicFileName = 'on';

Enable this setting to enable logging to multiple files.
4 To enable file scopes to collect data up to the number of samples, and then start over

again, type:

sc.AutoRestart = 'on';

Use this setting for the creation of multiple log files.
5 To limit each log file size to 4096, type:

sc.MaxWriteFileSize = 4096;

9 Real-Time Applications and Scopes in the MATLAB Interface

9-14

You must use this property. Set MaxWriteFileSize to a multiple of the WriteSize
property.

6 To enable the file scope to create multiple log files with the same name pattern, type:

sc.Filename = 'file_<%>.dat';

This sequence directs the software to create up to nine log files, file_1.dat to
file_9.dat on the target computer file system.

7 To add signal 4 to the file scope, type:

addsignal(sc, 4);
8 Caution Before starting the scope, copy previously acquired data to the development

computer. When the file scope starts, the software overwrites previously acquired
data in files of the specified name or name pattern. A partially overwritten file or a
file that is opened but left unwritten loses its original contents.

To start the scope, type

start(sc)
9 To start the real-time application, type

start(tg)

The software creates a log file named file_1.dat and writes data to that file. When the
size of file_1.dat reaches 4096 bytes (value of MaxWriteFileSize), the software
closes the file and creates file_2.dat. When its size reaches 4096 bytes, the software
closes it and creates file_3.dat, and so on.

The software repeats this sequence until it fills the last log file, file_9.dat. If the real-
time application continues to run and collect data after file_9.dat, the software
reopens file_1.dat and overwrites the existing contents. It cycles through the other log
files sequentially.

• For more information on file scopes, see “Configure Real-Time File Scope Blocks” on
page 4-93.

• To retrieve the file programmatically from the target computer for analysis, see
“Using SimulinkRealTime.fileSystem Objects” on page 10-4.

 Acquire Signal Data into Dynamically Named Files

9-15

• To acquire signal data into a single file, see “Acquire Signal Data with File Scopes” on
page 9-12.

9 Real-Time Applications and Scopes in the MATLAB Interface

9-16

Scope Trigger Configuration
You can configure Simulink Real-Time scopes to acquire data right away, or define
triggers for scopes so that the Simulink Real-Time scopes wait until they are triggered to
acquire data. You can configure Simulink Real-Time scopes to start acquiring data when
a predefined trigger condition is met. The exact condition depends on the trigger mode
that you specify.

• Freerun — Acquires data when the scope is started (default).
• Software — Acquires data in response to a user request, such as a call to one of the

Scope functions (SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger) or a call to a C or .NET API function
(xPCScSoftwareTrigger, xPCScope.Trigger).

• Signal — Acquires data when a particular signal has crossed a preset level.
• Scope — Acquires data when another (triggering) scope starts.

You can use several additional properties to refine when a scope starts to acquire data.
For example, if you want the scope to be triggered when another signal crosses a certain
value, use Signal trigger mode. Specify:

• The signal to trigger the scope.
• The trigger level that the signal must cross to trigger the scope to start acquiring

data.
• Whether the scope is triggered on a rising signal, falling signal, or either one.

The trigger point is the sample at which the scope trigger condition is satisfied. For
signal triggering, the trigger point is the sample at which the trigger signal passes
through the trigger level. At the trigger point, the scope acquires the first sample. By
default, scopes start acquiring data from the trigger point onwards. You can modify this
behavior using pretriggering and posttriggering with the NumPrePostSamples scope
property. See “Pretriggering and Posttriggering of Scopes” on page 9-18.

 Scope Trigger Configuration

9-17

Pretriggering and Posttriggering of Scopes
By default, the scope starts acquiring data at the same time as the trigger event (the
trigger point). Sometimes, to observe the values that led to the trigger, you start
acquiring data a given number of samples before the trigger event (pretriggering). Other
times, to observe the system settling after the trigger, you delay acquiring data a given
number of samples after the trigger event (posttriggering).

Use the NumPrePostSamples scope property to specify pretriggering and posttriggering.
A negative value indicates pretriggering and a positive value indicates posttriggering.
For example, suppose that P is the value of NumPrePostSamples for Scope 1 and TP is
the trigger point, the sample where the trigger event occurs.

• P = 0 — Scope 1 starts acquiring data immediately at trigger point TP.

• P < 0 — Scope 1 starts acquiring data |P| samples before trigger point TP.

9 Real-Time Applications and Scopes in the MATLAB Interface

9-18

• P > 0 — Scope 1 starts acquiring data P samples after trigger point TP.

 Pretriggering and Posttriggering of Scopes

9-19

Trigger One Scope with Another Scope
When you have started two scopes that you want to keep synchronized, you can trigger
one scope with another to acquire data. Set up the first scope with the trigger of your
choice, and then trigger the second scope from the first.

In this setup, Scope 1 triggers Scope 2.

1 Two scope objects are configured as a vector with the command:
tg = slrt;
sc = addscope(tg, 'host', [1 2]);

2 For Scope 1, set these values:
sc(1).ScopeId = 1
sc(1).NumSamples = N1
sc(1).NumPrePostSamples = P1

3 For Scope 2, set these values:
sc(2).ScopeId = 2
sc(2).NumSamples = N2
sc(2).TriggerMode = 'Scope'
sc(2).TriggerScope = 1
sc(2).NumPrePostSamples = P2

Because Scope 1 triggers Scope 2, the trigger point TP is the same for both scopes.
However, Scopes 1 and 2 can acquire different samples.

In this section...
“Scope-Triggered Data Acquisition” on page 9-20
“Trigger Sample Setting” on page 9-23

Scope-Triggered Data Acquisition
Some representative relationships between data acquisitions by Scope 1 and Scope 2 are
shown in the figures. P1 and P2 are the values of NumPrePostSamples for Scopes 1 and
2. TP is the trigger point, the sample where a trigger event occurs, for both Scopes 1 and
2. Scope 2 begins acquiring data as described.

• P1 = 0 and P2 = 0 — Scope 1 and Scope 2 start acquiring data immediately at
trigger point TP.

9 Real-Time Applications and Scopes in the MATLAB Interface

9-20

• P1 < 0 and P2 > 0 — Scope 1 starts acquiring data |P1| samples before trigger
point TP. Scope 2 starts acquiring data P2 samples after trigger point TP.

 Trigger One Scope with Another Scope

9-21

• P1 > 0 and P2 < 0— Scope 1 starts acquiring data P1 samples after trigger point
TP. Scope 2 starts acquiring data |P2| samples before trigger point TP.

9 Real-Time Applications and Scopes in the MATLAB Interface

9-22

Trigger Sample Setting

For additional flexibility in scope triggering, you can use the Scope 2 trigger sample
setting.

 Trigger One Scope with Another Scope

9-23

sc(2).TriggerSample = range 0 to (N + P1 - 1)

• sc(2).TriggerSample = 0 (default) — Scope 2 triggers when Scope 1 triggers.
Trigger point TP is the same sample for both scopes.

• sc(2).TriggerSample = ts > 0 — Scope 2 triggers ts samples after Scope 1 is
triggered. Trigger point TP2 for Scope 2 is ts samples after TP1 for Scope 1.

9 Real-Time Applications and Scopes in the MATLAB Interface

9-24

Setting sc(2).TriggerSample to a value ts larger than (N + P - 1) does not
cause an error. It implies that Scope 2 cannot be triggered, because Scope 1 cannot
acquire more than (N + P - 1) samples after TP.

• sc(2).TriggerSample = -1 (special case) — Causes Scope 2 to start acquiring
data from the sample after Scope 1 stops acquiring.

 Trigger One Scope with Another Scope

9-25

9 Real-Time Applications and Scopes in the MATLAB Interface

9-26

Minimize Data Gaps with Two Scopes
With two scopes, you can minimize data overlap or gaps. The first scope acquires data up
to sample N, then stops. The second scope begins to acquire data at sample N+1.

In this example, the TriggerMode property of Scope 1 is set to 'Scope', but it is
explicitly triggered with the MATLAB function trigger(sc1).

You can use the trigger function to force real-time scopes to trigger, regardless of
trigger mode setting and regardless of whether the triggering criteria were met.

To minimize gaps by acquiring data with two scopes:

1 Build and download the Simulink model xpcosc to the target computer.
2 In the MATLAB Command Window, assign tg to the target computer and set the

StopTime property to 10.

tg = slrt;
tg.StopTime = 10;

3 Add a vector of two host scopes to the real-time application. Use the vector index to
switch from one scope to the other.

 Minimize Data Gaps with Two Scopes

9-27

sc = addscope(tg,'host', [1 2]);
4 Add signals 4 and 5 to both scopes.

addsignal(sc,[4 5]);
5 Set the NumSamples property for both scopes to 500 and the TriggerSample

property for both scopes to -1. With this property setting, each scope triggers the
next scope at the end of its 500 sample acquisition.

sc(1).NumSamples = 500;
sc(1).TriggerSample = -1;

sc(2).NumSamples = 500;
sc(2).TriggerSample = -1;

6 Set the TriggerMode property for scopes 1 and 2 to 'Scope'. Set the
TriggerScope property such that each scope triggers the other.

sc(1).TriggerMode = 'Scope';
sc(1).TriggerScope = 2;

sc(2).TriggerMode = 'Scope';
sc(2).TriggerScope = 1;

7 Set up storage for time, t, and signal, data acquisition.

t = [];
data = zeros(0, 2);

8 Start both scopes and the model.

start(sc);
start(tg);

Both scopes receive the same signals, 4 and 5.
9 To start acquiring data, explicitly trigger scope 1.

scNum = 1;
trigger(sc(scNum));

Setting scNum to 1 indicates that Scope 1 acquires data first.
10 Start acquiring data using the two scopes to double buffer the data.

while (1)

9 Real-Time Applications and Scopes in the MATLAB Interface

9-28

 % Busy wait until this scope has finished acquiring 500 samples
 % or the model stops (scope is interrupted).
 while ~(strcmp(sc(scNum).Status, 'Finished') || ...
 strcmp(sc(scNum).Status, 'Interrupted'))
 end

 % Stop buffering data when the model stops.
 % Pause to be certain that the status property has been updated.

 pause(0.1)

 if strcmp(tg.Status, 'stopped')
 break
 end

 % Save the data.
 t(end + 1 : end + 500) = sc(scNum).Time;
 data(end + 1 : end + 500, :) = sc(scNum).Data;

 % Restart this scope.
 start(sc(scNum));

 % Switch to the next scope.
 if(scNum == 1) scNum = 2;
 else scNum = 1;
 end

end

11 When done, remove the scopes.

% Remove the scopes we added.
remscope(tg,[1 2]);

12 Plot the data.

plot(t,data);
grid on;
legend('Signal 4','Signal 5');

 Minimize Data Gaps with Two Scopes

9-29

Following is a complete code listing for the preceding double-buffering data acquisition
procedure. After you download the model (xpcosc) to the target computer, you can copy
and paste this code into a MATLAB file and run it. Communication between the
development and target computers must be fast enough to transmit the entire set of
samples before the next acquisition cycle starts. In a similar way, you can use more than
two scopes to implement a triple- or quadruple-buffering scheme.

9 Real-Time Applications and Scopes in the MATLAB Interface

9-30

% Assumes model xpcosc program text has been
% built and loaded on the target computer.

% Attach to the target computer and set StopTime to 10 sec.
tg = slrt;
tg.StopTime = 10;

% Add two host scopes.
sc = addscope(tg,'host', [1 2]);

% [4 5] are the signals of interest. Add to both scopes.
addsignal(sc,[4 5]);

% Each scope triggers the next scope at end of a 500 sample acquisition.
sc(1).NumSamples = 500;
sc(1).TriggerSample = -1;

sc(2).NumSamples = 500;
sc(2).TriggerSample = -1;

sc(1).TriggerMode = 'Scope';
sc(1).TriggerScope = 2;

sc(2).TriggerMode = 'Scope';
sc(2).TriggerScope = 1;

% Initialize time and data log.
t = [];
data = zeros(0, 2);

% Start the scopes and the model.
start(sc);
start(tg);

% To start the capture, explicitly trigger scope 1.
scNum = 1;
trigger(sc(scNum));

% Use the two scopes as a double buffer to log the data.
while (1)

 % Busy wait until this scope has finished acquiring 500 samples
 % or the model stops (scope is interrupted).
 while ~(strcmp(sc(scNum).Status, 'Finished') || ...
 strcmp(sc(scNum).Status, 'Interrupted'))
 end

 % Stop buffering data when the model stops.
 % Pause to be certain that the status property has been updated.

 pause(0.1)

 if strcmp(tg.Status, 'stopped')
 break
 end

 Minimize Data Gaps with Two Scopes

9-31

 % Save the data.
 t(end + 1 : end + 500) = sc(scNum).Time;
 data(end + 1 : end + 500, :) = sc(scNum).Data;

 % Restart this scope.
 start(sc(scNum));

 % Switch to the next scope.
 if(scNum == 1) scNum = 2;
 else scNum = 1;
 end

end

% Remove the scopes we added.
remscope(tg,[1 2]);

% Plot the data.
plot(t,data);
grid on;
legend('Signal 4','Signal 5');

9 Real-Time Applications and Scopes in the MATLAB Interface

9-32

Logging Signal Data with File System
Objects

• “File System Basics” on page 10-2
• “Using SimulinkRealTime.fileSystem Objects” on page 10-4

10

File System Basics
Simulink Real-Time file scopes create files on the target computer. To work with these
files from the development computer, see File System. The
SimulinkRealTime.fileSystem object allows you to perform file system-like
operations on the target computer file system.

You cannot direct the scope to write the data to a file on the Simulink Real-Time
development computer. When the software has written the signal data file to the target
computer, you can access the contents of the file from the development computer.

The software can write data files to:

• Hard drive — The target computer hard drive supports a serial ATA (SATA) drive.
The Simulink Real-Time software supports file systems of type FAT-32 only.

Check that the hard drive is not cable-selected and that the target computer BIOS
can detect it. The maximum file size is limited by the FAT-32 file system type.

A Simulink Real-Time file scope can access the target computer hard drive, provided
it is formatted with the FAT-32 file system. Simulink Real-Time ignores other file
systems.

Note In a future release, the SecondaryIDE target setting will be read-only and set
to 'off'.

• ERAM drive — If the target computer has more than 4 GB of RAM, the kernel
automatically formats the excess memory as an extended RAM (ERAM) drive. The
kernel assigns the ERAM drive the drive letter 'H:'. Use the ERAM drive when you
need faster file I/O than you can achieve with other drive types.

The limitations for hard drives also apply to the ERAM drive.
• USB drive — To write data files to a USB drive, you must set the USB Support

property in Simulink Real-Time.
• 3.5-inch disk drive – Writing data files to a 3.5-inch disk drive is considerably

slower than writing to a hard drive.

There are the following limitations:

• You can have at most eight files open on the target computer at the same time.

10 Logging Signal Data with File System Objects

10-2

• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

You can access signal data files, or other target computer system files, in one of the
following ways:

• If running the target computer standalone, you can access a file by restarting the
target computer under an operating system such as DOS. You can access the file
through the operating system utilities.

• If running the target computer linked to a development computer, you can access the
target computer file system from the development computer using a
SimulinkRealTime.fileSystem function.

You can perform file transfer operations using the functions
SimulinkRealTime.copyFileToHost and SimulinkRealTime.copyFileToTarget.

You can perform file system-like tasks using functions such as
SimulinkRealTime.fileSystem.fopen and
SimulinkRealTime.fileSystem.fread on the signal data file. File system functions
work like the corresponding MATLAB file I/O functions.

The SimulinkRealTime.fileSystem class also includes file system utilities that allow
you to collect target computer file system information for the disk and disk buffers.

This topic focuses primarily on using the SimulinkRealTime.fileSystem functions to
work with target computer data files that you generate from a real-time Scope of type
file.

For an example of how to perform data logging with file scopes, see “Data Logging With a
File Scope”.

 File System Basics

10-3

Using SimulinkRealTime.fileSystem Objects
In this section...
“Copying Files from the Target Computer to the Development Computer” on page 10-
6
“Copying Files from the Development Computer to the Target Computer” on page 10-
6
“Accessing File Systems on a Specific Target Computer” on page 10-7
“Reading the Contents of a File on the Target Computer” on page 10-8
“Removing a File from the Target Computer” on page 10-10
“Getting a List of Open Files on the Target Computer” on page 10-10
“Getting Information About a File on the Target Computer” on page 10-11
“Getting Information About a Disk on the Target Computer” on page 10-12

The fileSystem object enables you to work with the target computer file system from
the development computer. You enter target object functions in the MATLAB window on
the development computer or use scripts. The fileSystem object has functions that
allow you to use

• SimulinkRealTime.fileSystem.cd to change folders
• SimulinkRealTime.fileSystem.dir to list the contents of the current folder
• SimulinkRealTime.fileSystem.mkdir to make a folder
• SimulinkRealTime.fileSystem.pwd to get the current working folder path
• SimulinkRealTime.fileSystem.rmdir to remove a folder
• SimulinkRealTime.fileSystem.diskinfo to get information about the specified

disk
• SimulinkRealTime.fileSystem.fclose to close a file (similar to MATLAB

fclose)
• SimulinkRealTime.fileSystem.fileinfo to get information about a particular

file
• SimulinkRealTime.fileSystem.filetable to get information about files in the

file system
• SimulinkRealTime.fileSystem.fopen to open a file (similar to MATLAB fopen)

10 Logging Signal Data with File System Objects

10-4

• SimulinkRealTime.fileSystem.fread to read a file (similar to MATLAB fread)
• SimulinkRealTime.fileSystem.fwrite to write a file (similar to MATLAB

fwrite)
• SimulinkRealTime.fileSystem.getfilesize to get the size of a file in bytes
• SimulinkRealTime.fileSystem.removefile to remove a file from the target

computer

Useful global functions:

• SimulinkRealTime.copyFileToHost to retrieve a file from the target computer to
the development computer

• SimulinkRealTime.copyFileToTarget to place a file from the development
computer on the target computer

• SimulinkRealTime.utils.getFileScopeData, to interpret the raw data from the
fread function

These procedures assume that the target computer has a signal data file created by a
Simulink Real-Time file scope. This file has the path name C:\data.dat.

There are the following limitations:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

In this section...
“Copying Files from the Target Computer to the Development Computer” on page 10-
6

 Using SimulinkRealTime.fileSystem Objects

10-5

In this section...
“Copying Files from the Development Computer to the Target Computer” on page 10-
6
“Accessing File Systems on a Specific Target Computer” on page 10-7
“Reading the Contents of a File on the Target Computer” on page 10-8
“Removing a File from the Target Computer” on page 10-10
“Getting a List of Open Files on the Target Computer” on page 10-10
“Getting Information About a File on the Target Computer” on page 10-11
“Getting Information About a Disk on the Target Computer” on page 10-12

Copying Files from the Target Computer to the Development Computer

You can copy a data file from the target computer to the development computer using a
SimulinkRealTime package function on the development computer.

For example, to retrieve a file named data.dat from the target computer C:\ drive
(default):

1 If you have not already done so, in the MATLAB window, type the following to
assign the default SimulinkRealTime.target object to a variable.

tg = slrt;
2 Type

SimulinkRealTime.copyFileToHost(tg,'data.dat')

This command retrieves the file and saves that file to the variable data. This
content is in the Simulink Real-Time file format.

Copying Files from the Development Computer to the Target Computer

You can copy a file from the development computer to the target computer using a
SimulinkRealTime package function on the development computer.

For example, to copy a file named data2.dat from the development computer to the
target computer C:\ drive (default),

10 Logging Signal Data with File System Objects

10-6

1 If you have not already done so, in the MATLAB window, type the following to
assign the default SimulinkRealTime.target object to a variable.

tg = slrt;
2 Type the following to save that file to the variable data.

SimulinkRealTime.copyFileToTarget(tg,'data2.dat')

Accessing File Systems on a Specific Target Computer

You can access specific target computer files from the development computer for the
SimulinkRealTime.fileSystem object.

Use the SimulinkRealTime.fileSystem creator function. If your system has multiple
targets, you can access specific target computer files from the development computer for
the SimulinkRealTime.fileSystem object.

For example, to list the name of the current folder of target computer 'TargetPC1':

1 In the MATLAB window, type a command like the following to assign the
SimulinkRealTime.fileSystem object for the default computer to a variable.

fsys = SimulinkRealTime.fileSystem;
2 Type

dir(fsys)

Alternatively, you can use the SimulinkRealTime.target constructor to construct a
target object for a specific computer, then use that target object as an argument to
SimulinkRealTime.fileSystem.

1 In the MATLAB window, type a command like the following to assign the
SimulinkRealTime.target object for target computer 'TargetPC1' to a variable.

tg1 = SimulinkRealTime.target('TargetPC1');
2 To assign the SimulinkRealTime.fileSystem object to a variable, type:

fsys = SimulinkRealTime.fileSystem(tg1);
3 Type

dir(fsys)

 Using SimulinkRealTime.fileSystem Objects

10-7

Reading the Contents of a File on the Target Computer

You can read the contents of a data file from the target computer by using
SimulinkRealTime.fileSystem functions on the development computer. Use this
procedure as an alternative to the method described in “Configure File Scopes with
MATLAB Language” on page 4-124.

To run a SimulinkRealTime.fileSystem object function, use the
function_name(fs_object, argument_list) syntax. For example, to retrieve the
contents of a file named data.dat from the target computer C:\ drive (default):

1 If you have not already done so, in the MATLAB window, type the following to
assign the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;
2 Type

h = fopen(fsys, 'data.dat');

This command opens the file data.dat for reading and assigns the file identifier to
h.

3 Type

data2 = fread(fsys,h);

This command reads the file data.dat and stores the contents of the file to data2.
This content is in the Simulink Real-Time file format.

4 Type

fclose(fsys, h)

This command closes the file data.dat.

Before you can view or plot the contents of this file, you must convert the contents. See
“Converting Simulink Real-Time File Format Content to Double Precision Data” on page
10-8.

Converting Simulink Real-Time File Format Content to Double Precision Data

The Simulink Real-Time software provides the function
SimulinkRealTime.utils.getFileScopeData to convert Simulink Real-Time file

10 Logging Signal Data with File System Objects

10-8

format content (in bytes) to double precision data representing the signals and
timestamps. The SimulinkRealTime.utils.getFileScopeData function takes in
data from a file in Simulink Real-Time format. The data must be a vector of bytes
(uint8). To convert the data to uint8, use a command like the following:

data2 = uint8(data2');

This section assumes that you have a variable, data2, that contains data in the
Simulink Real-Time file format (see “Reading the Contents of a File on the Target
Computer” on page 10-8).

1 In the MATLAB window, change folder to the folder that contains the Simulink
Real-Time format file.

2 Type

new_data2 = SimulinkRealTime.utils.getFileScopeData(data2);

SimulinkRealTime.utils.getFileScopeData converts the format of data2
from the Simulink Real-Time file format to an array of bytes. It also creates a
structure for that file in new_data2, of which one of the elements is an array of
doubles, data. The data member is also appended with a timestamp vector. The
data is returned as doubles, which represent the real-world values of the original
Simulink signals at the specified times during target execution.

You can view or examine the signal data. You can also plot the data with
plot(new_data2.data).

If you use Simulink Real-Time in standalone mode, you can extract the data from the
data file:

• First determine the file header size. To obtain the file header size, ignore the first 8
bytes of the file. The next 4 bytes store the header size as an unsigned integer.

• After the header size number of bytes, the file stores the signals sequentially as
doubles. For example, assume that the scope has three signals, x, y, and z. Assume
that x[0] is the value of x at sample 0, x[1] is the value at sample 1, and so forth.
Also assume t[0], t[1] are the simulation time values at samples 0, 1, and so forth.
The file saves the data using the following pattern:

x[0] y[0] z[0] t[0] x[1] y[1] z[1] t[1] x[2] y[2] z[2] t[2]...
x[N] y[N] z[N] t[N]

 Using SimulinkRealTime.fileSystem Objects

10-9

N is the number of samples acquired. The file saves x, y, z, and t as doubles at 8
bytes each.

Removing a File from the Target Computer
You can remove a file from the target computer by using Simulink Real-Time functions
on the development computer for the SimulinkRealTime.fileSystem object. If you
have not already done so, close this file first with fclose.

To run a SimulinkRealTime.fileSystem object function, use the
function_name(fs_object, argument_list) syntax. For example, to remove a file
named data2.dat from the target computer C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following to
assign the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;
2 Type the following to remove the specified file from the target computer.

removefile(fsys,'data2.dat')

Getting a List of Open Files on the Target Computer
You can get a list of open files on the target computer file system by using
SimulinkRealTime.fileSystem object functions on the development computer. The
target computer file system limits the number of open files you can have to eight. Use
this list to identify files that you can close.

To run a SimulinkRealTime.fileSystem object function, use the
function_name(fs_object, argument_list) syntax. For example, to get a list of
open files for the file system object fsys,

1 If you have not already done so, in the MATLAB window, type the following to
assign the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;
2 Type

filetable(fsys)

If the file system has open files, a list like the following is displayed:

10 Logging Signal Data with File System Objects

10-10

ans =
Index Handle Flags FilePos Name
--
 0 00060000 R__ 8512 C:\DATA.DAT
 1 00080001 R__ 0 C:\DATA1.DAT
 2 000A0002 R__ 8512 C:\DATA2.DAT
 3 000C0003 R__ 8512 C:\DATA3.DAT
 4 001E0001 R__ 0 C:\DATA4.DA

3 The table returns the open file handles in hexadecimal. To convert a handle to one
that other SimulinkRealTime.fileSystem functions, such as fclose, can use,
use the hex2dec function. For example,

h1 = hex2dec('001E0001')

h1 =
1966081

4 To close that file, use the SimulinkRealTime.fileSystem fclose function. For
example,

fclose(fsys, h1)

Getting Information About a File on the Target Computer

You can display information for a file on the target computer file system by using
SimulinkRealTime.fileSystem object functions on the development computer.

To run a SimulinkRealTime.fileSystem object function, use the
function_name(fs_object, argument_list) syntax. For example, to display the
information for the file identifier fid1,

1 If you have not already done so, in the MATLAB window, type the following to
assign the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;
2 Type

fid1 = fopen(fsys, 'data.dat');

This command opens the file data.dat for reading and assigns the file identifier to
fid1.

3 Type

 Using SimulinkRealTime.fileSystem Objects

10-11

fileinfo(fsys, fid1)

This returns disk information like the following for the C:\ drive file system.

ans =
 FilePos: 0
 AllocatedSize: 12288
 ClusterChains: 1
 VolumeSerialNumber: 1.0450e+009
 FullName: 'C:\DATA.DAT'

Getting Information About a Disk on the Target Computer

You can display information for a disk on the target computer file system by using
SimulinkRealTime.fileSystem object functions on the development computer.

To run a SimulinkRealTime.fileSystem object function, use the
function_name(fs_object, argument_list) syntax. For example, to display the
disk information for the C:\ drive,

1 If you have not already done so, in the MATLAB window, type the following to
assign the SimulinkRealTime.fileSystem object to a variable.

fsys = SimulinkRealTime.fileSystem;
2 Type

diskinfo(fsys, 'C:\');

This returns disk information like the following for the C:\ drive file system.

ans =

 struct with fields:

 DriveLetter: 'C'
 Label: 'FREEDOS'
 Reserved: ' '
 SerialNumber: -857442364
 FirstPhysicalSector: 63
 FATType: 32
 FATCount: 2
 MaxDirEntries: 0
 BytesPerSector: 512

10 Logging Signal Data with File System Objects

10-12

 SectorsPerCluster: 64
 TotalClusters: 1831212
 BadClusters: 0
 FreeClusters: 1827614
 Files: 938
 FileChains: 942
 FreeChains: 1
 LargestFreeChain: 1827614
 DriveType: DRIVE_FIXED

 Using SimulinkRealTime.fileSystem Objects

10-13

Deploy the MATLAB Application as a
Standalone Executable

• “MATLAB Runtime Setup” on page 11-2
• “Deploy MATLAB Application to Control Real-Time Application” on page 11-4

11

MATLAB Runtime Setup
As part of developing and testing your model, you can write MATLAB applications for:

• Parameter extreme value testing
• Regression testing
• Putting the model into a consistent state for testing another part of the system

To run an application on a Windows computer that does not have MATLAB installed, use
MATLAB Compiler to deploy the application as a standalone executable.

To deploy a MATLAB application, first set up MATLAB Runtime:

1 Open MATLAB.
2 To find the MCRInstaller program, type:

mcrinstaller

The Command Window displays output similar to this output: C:\Program Files
\MATLAB\R2017b\toolbox\compiler\deploy... \win64\MCRInstaller.exe

3 Copy and paste the full path to the MCRInstaller program into the Windows Run
text box.

4 Press Enter, and then follow the prompts.

Place the MATLAB Runtime in the default location, for example:

C:\Program Files\MATLAB\MATLAB Runtime

From the installation dialog box, copy and paste the location where the installer
places the MATLAB Runtime binary files:

C:\Program Files\MATLAB\MATLAB Runtime\v93
5 Close MATLAB and open a Windows command prompt window.
6 Type the following command:

set PATH=C:\Program Files\MATLAB\MATLAB Runtime\v93\bin\win64;%PATH%

This command sets the MATLAB Runtime path only for the command prompt
window within which you typed it. To make this environment variable setting visible
throughout the operating system, see the Windows documentation.

11 Deploy the MATLAB Application as a Standalone Executable

11-2

See Also

More About
• “Deploy MATLAB Application to Control Real-Time Application” on page 11-4

 See Also

11-3

Deploy MATLAB Application to Control Real-Time Application
Required Products: Simulink, Simulink Real-Time, MATLAB Compiler, and MATLAB
Compiler SDK™

This example shows how to deploy a test script as a standalone executable by using
MATLAB Compiler. The test script performs a frequency-response test of the xpcosc
model. Using this information, in the design phase, you can modify the internal
parameters of the model to meet your frequency requirements. In the production phase,
you can bin manufactured parts based on frequency response.

The test script is slrt_freq_sweep_test.m (matlab:open(fullfile(matlabroot,
'help','toolbox','xpc','examples','slrt_freq_sweep_test.m'))).

In this section...
“Prerequisites” on page 11-4
“Package the MATLAB Application” on page 11-4
“Run the MATLAB Application” on page 11-6

Prerequisites

This procedure assumes that you have:

1 Completed the steps in “MATLAB Runtime Setup” on page 11-2.
2 Opened MATLAB from the Windows command prompt window within which you

performed MATLAB run-time setup.
3 Configured TCP/IP communication between the development and target computers,

recorded the required settings in the test script slrt_freq_sweep_test.m, and
saved the script in a working folder.

4 Built the xpcosc real-time application.

Package the MATLAB Application
1 Open Apps > Application Compiler.
2 Enter the name of the application as slrt_freq_sweep_test. Add summary

information as required.

11 Deploy the MATLAB Application as a Standalone Executable

11-4

matlab:open(fullfile(matlabroot, 'help','toolbox','xpc','examples','slrt_freq_sweep_test.m'))
matlab:open(fullfile(matlabroot, 'help','toolbox','xpc','examples','slrt_freq_sweep_test.m'))

3 To save the project, click Save. Save the project under a name such as
slrt_freq_sweep_test.prj.

4 Click the Add main file button , and then navigate to the file
slrt_freq_sweep_test.m.

5 Under PACKAGING OPTIONS, select the Runtime included in package check
box.

6 Click the Package button .

 Deploy MATLAB Application to Control Real-Time Application

11-5

The compiler generates the application and opens the slrt_freq_sweep_test
folder in Windows Explorer.

7 To save the project, click Save.

Run the MATLAB Application
1 In Windows Explorer, navigate to slrt_freq_sweep_test

\for_redistribution_files_only.
2 Copy the real-time application file (xpcosc.mldatx) into slrt_freq_sweep_test

\for_redistribution_files_only.

The application assumes that the model file is in the folder where you run the
application.

3 If you are connected to the target computer within MATLAB, close the connection.
Use the close(tg) command.

4 To run the application, click slrt_freq_sweep_test.exe.

The application runs and displays a plot for each frequency.

11 Deploy the MATLAB Application as a Standalone Executable

11-6

After the run is complete, the application displays a text box containing the test
results.

 Deploy MATLAB Application to Control Real-Time Application

11-7

See Also

More About
• “Write Deployable MATLAB Code” (MATLAB Compiler)

11 Deploy the MATLAB Application as a Standalone Executable

11-8

Automated Test with Simulink Test

12

Test Real-Time Application
This example shows how to perform a frequency-response test of the model
ex_slrt_slt_osc (matlab:open_system(docpath(fullfile(docroot,
'toolbox', 'xpc', 'examples', 'ex_slrt_slt_osc')))).

12 Automated Test with Simulink Test

12-2

matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_slrt_slt_osc')))
matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_slrt_slt_osc')))

 Test Real-Time Application

12-3

Using this information, in the design phase, you can modify the internal parameters of
the model to meet your frequency requirements. In the production phase, you can bin
manufactured parts based on frequency response.

The figure shows representative output from a real-time application running on a target
computer. At low frequencies, the output of the Integrator1 block settles to the same
value as the output of the Signal Generator block. At high frequencies, the output of the
Integrator1 block is still ringing at the end of each pulse.

12 Automated Test with Simulink Test

12-4

The test determines the highest frequency at which the output values of the Integrator
and Signal Generator blocks are within a specified criterion of each other. The test uses
the model itself as a signal source and uses a test harness to compare the outputs of the
Integrator and Signal Generator blocks.

 Test Real-Time Application

12-5

Test Harness Constants

cStartFreq = 15.0 % Start frequency of parameter sweep. cStopFreq = 25.0 % End
frequency of parameter sweep. cFreqIncr = 1.0 % Frequency increment. cWOpen = 0.90 %
Start of time window for evaluating criterion. cWClose = 0.99 % End of time window
for evaluating criterion. cCriterion = 0.025 % Maximum normalized amplitude
difference % between Signal Generator and Integrator1 % within the time window.

Test Harness Variables

vfreq % Frequency at each iteration.
vw_open % Window opens once in each half-period.
vw_close % Window closes once in each half-period.

Step 1. Set Model Configuration Parameters

1 Open ex_slrt_slt_osc in a writable folder.
2 Open the Configuration Parameters dialog box.
3 Open the Model Referencing node, and then set Total number of instances allowed

per top model to One.
4 Open the Data Import/Export node and make the following settings:

• Set Format to Structure with time.
• Set the Time and Output check boxes.
• Clear the States, Final states, Signal logging, Data stores, and Log Dataset data to

file check boxes.

Step 2. Create Test Harness

1 In Analysis, select Test Harness > Create for Model. The software creates a test
harness with the default name ex_slrt_slt_osc_Harness1.

2 In the Basic Properties pane, select the Save Test Harnesses Externally check box.
3 For the Input to Component under Test, select None.
4 For the Output from Component under Test, select Outport.
5 Select the Add separate assessment block check box.
6 Select the Open harness after creation check box.
7 Take the defaults in the remaining panes.

12 Automated Test with Simulink Test

12-6

8. Click OK.

The test harness looks like this figure.

 Test Real-Time Application

12-7

The example model ex_slrt_slt_osc stores the test harness within the model. To
access the test harness from the example model:

1 In Simulink Editor, click Analysis > Test Harness > Manage Test Harnesses.
2 Click ex_slrt_slt_osc_Harness1.
3 To return to the example model, select it in the perspectives view in the lower right

corner of the test harness.

Step 3. Set Test Harness Configuration Parameters

1 Open ex_slrt_slt_osc_Harness1.

12 Automated Test with Simulink Test

12-8

2 Open the Configuration Parameters dialog box.
3 Open the Model Referencing node, and then set Total number of instances

allowed per top model to One.
4 Open the Data Import/Export node.
5 Set Format to Structure with time.
6 Set the Time and Output check boxes.
7 Clear the States, Final states, Signal logging, Data stores, and Log Dataset

data to file check boxes.

Step 4. Configure Test Harness

1 Open the Test Assessment block.
2 To simplify the test assessment configuration, in the Input symbol list, replace

input Outport with inputs Int1 and SigGen.
3 In ex_slrt_slt_osc_Harness1, connect a Demux block to ex_slrt_slt_osc/

Outport.
4 In the Demux block dialog box, set Number of outputs to 2.
5 To make the Demux outputs visible to the Test Assessment block, connect unitary

Gain blocks to each of the Demux block outputs.
6 Connect the top Demux block output to Test Assessment/Int1 and the bottom

output to Test Assessment/SigGen.

 Test Real-Time Application

12-9

Step 5. Configure Simulink Parameters

1 On the toolbar, click the Model Explorer button.
2 Click node ex_slrt_slt_osc_Harness1 > Model Workspace.
3 In the toolbar, click the Add Simulink Parameter button.
4 Add the following data object:

• Name — Criterion

12 Automated Test with Simulink Test

12-10

• Value — 0
• DataType — double
• Storage Class — ExportedGlobal

5. In a similar manner, add Simulink parameters w_open and w_close. Because these
parameters are in the ex_slrt_slt_osc_Harness1 model workspace as model
parameters, you access them by name directly, without model hierarchy.

6. Save the model.

Step 6. Prepare Test Assessment Steps

1. Open the Test Assessment block

2. Add these parameters to the Parameter symbol list:

 Test Real-Time Application

12-11

• Criterion
• w_open
• w_close

3. To add a step, in the Step column, move the cursor to the top row, click Add step
after, and type:

CheckSetting

4. Right-click step CheckSetting and set the When decomposition check box.

5. To add a substep to CheckSetting, click Add sub-step, and type:

 Hi when (SigGen > 0)

The when expression selects one half of the waveform.

6. Right-click substep Hi when and set the When decomposition check box.

7. To substep Hi when, add substep:

 HiCheck when ((et >= w_open) && (et <= w_close))
 verify((abs(Int1) >= abs(SigGen) * (1.0 - Criterion)) && ...
 (abs(Int1) <= abs(SigGen) * (1.0 + Criterion)));

The when expression selects the time window for testing the acceptance criterion. The
verify command tests the acceptance criterion.

8. In a similar manner, to step CheckSetting, add substep:

 Lo when (SigGen < 0)

9. To substep Lo when, add substep:

 LoCheck when ((et >= w_open) && (et <= w_close))
 verify((abs(Int1) >= abs(SigGen) * (1.0 - Criterion)) && ...
 (abs(Int1) <= abs(SigGen) * (1.0 + Criterion)));

10. Right-click substep Lo when and set the When decomposition check box.

11. To satisfy the requirements of When decomposition, remove the default Run step
and insert DefaultStep substeps after steps CheckSetting, Hi when, and Lo when.

12 Automated Test with Simulink Test

12-12

When decomposition requires at least two steps at each level of nesting, and one
nondecomposed step at the end of each list of steps.

Step 7. Initialize Test Suite

1 Click on the ex_slrt_slt_osc subsystem.
2 Open Analysis > Test Manager.
3 Select New > Test File.
4 Name the test file realtimetest.
5 Right-click the test file and select New > Real-Time Test.
6 In the new real-time test dialog box, enter Simulation in the Test Type field.
7 Click Create.
8 Rename the new test suite to realtimesuite.
9 Rename the new test case to frequencysweep.

 Test Real-Time Application

12-13

Step 8. Initialize System Under Test

1 In Test Manager, select node frequencysweep.
2 Select tab System Under Test.
3 Set Load Application From to Model.
4 Set Model to ex_slrt_slt_osc.
5 Set Target Computer to TargetPC1.
6 In tab Test Harness, set Harness to ex_slrt_slt_osc_Harness1.
7 In tab Simulation Settings Overrides, select the Stop Time check box.
8 Take the defaults for the other fields.

Step 9. Initialize Parameter Overrides

1 In Test Manager, select tab Parameter Overrides.
2 Click the Add button. A dialog box opens containing a list of parameters. If

parameters are not visible, click the Refresh line at the top of the dialog box. The
refresh builds the model and uploads the model and block parameters from
ex_slrt_slt_osc_Harness1 and ex_slrt_slt_osc.

3 Open Parameter Set 1 and select the Criterion, Frequency, w_close, and
w_open check boxes. Leave the other check boxes cleared.

12 Automated Test with Simulink Test

12-14

Step 10. Create Scripted Iterations

1 In Test Manager, select tab Iterations > Scripted Iterations.
2 In the text box, enter the following code. To resize the Scripted Iterations text box,

click and drag the lower-right corner of the box.

% Initialize constants
cStartFreq = 15.0;
cStopFreq = 25.0;
cFreqIncr = 1.0;
cWOpen = 0.90;
cWClose = 0.99;
cCriterion = 0.025;

% Loop through test frequencies
for vfreq = cStartFreq:cFreqIncr:cStopFreq

 % Create a new iteration
 testItr = sltest.testmanager.TestIteration();

 Test Real-Time Application

12-15

 % Calculate the time window
 half_period = 0.5 * (1.0/vfreq);
 vw_open = half_period * cWOpen;
 vw_close = half_period * cWClose;

 % Set the parameters for the iteration
 testItr.setVariable('Name','Frequency','Source', ...
 'ex_slrt_slt_osc/Signal Generator','Value',vfreq);
 testItr.setVariable('Name','w_open','Source', ...
 '','Value', vw_open);
 testItr.setVariable('Name','w_close','Source', ...
 '','Value', vw_close);
 testItr.setVariable('Name','Criterion','Source', ...
 '','Value', cCriterion);

 % Name and add the iteration to the testcase
 str = sprintf('%.0f Hz', vfreq);
 addIteration(sltest_testCase, testItr, str);
end

12 Automated Test with Simulink Test

12-16

Step 11. Run Test

1 Build and download ex_slrt_slt_osc to the target computer.
2 In Test Manager, on the toolbar, click the Run button.
3 To view test results, in the left column, click Results and Artifacts. In this case,

the test failed at iteration 23 Hz.
4 To view the failing results, open nodes 23 Hz > Verify Statements and 23 Hz >

Sim Output (ex_slrt_slt_osc).

 Test Real-Time Application

12-17

Step 12. Display Results

1 In the Simulation Data Inspector pane, select the Layout button.
2 Select two horizontal displays.
3 In the top Simulation Data Inspector display, select the two Out check boxes and the

top Test Assessment check box. This assessment corresponds to the HiCheck
substep.

4 In the bottom display, select the two Out check boxes and the bottom Test
Assessment check box. This assessment corresponds to the LoCheck substep.

5 Click the Zoom in Time button and select the range 4.00-4.1.

In the top display, the vertical red line near 4.04 followed by a horizontal green line
shows that the HiCheck test failed briefly before succeeding. In the bottom display, the
vertical red spike near 4.02 followed by a horizontal green line shows that the LoCheck
test failed briefly before succeeding.

12 Automated Test with Simulink Test

12-18

See Also
Test Assessment | Test Sequence

 See Also

12-19

More About
• “Test Models in Real Time” (Simulink Test)
• matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',

'ex_slrt_slt_osc')))
• “Real-Time Testing” (Simulink Test)

12 Automated Test with Simulink Test

12-20

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_slt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_slt_osc')))

Troubleshooting

21

Troubleshooting Basics

For questions or issues about your installation of the Simulink Real-Time product, refer
to these guidelines and tips. For more specific troubleshooting solutions, go to the
MathWorks® Support website:

www.mathworks.com/support/search_results.html?q=product:"Simulink
+Real-Time"

13

https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

Troubleshooting Process
A Simulink Real-Time installation can sometimes fail. Causes include development and
target computer failures, changes in underlying system software, I/O module failures,
and procedural errors. To address these issues, follow this process:

1 Run the confidence test (see “Run Confidence Test on Configuration”).

Run the confidence test as the first step in troubleshooting, and in validating your
initial product installation and configuration.

2 If one or more tests fail, see the following information about the specific failure:

• “Test 1: Ping Target Computer with System Ping” on page 14-2
• “Test 2: Ping Target Computer with slrtpingtarget” on page 14-4
• “Test 3: Software Restart Target Computer” on page 14-5
• “Test 4: Build and Download slrttestmdl” on page 14-7
• “Test 5: Check Communication with Target Computer” on page 14-9
• “Test 6: Download Prebuilt Real-Time Application” on page 14-10
• “Test 7: Execute Real-Time Application” on page 14-11
• “Test 8: Upload Logged Data and Compare Results” on page 14-12

3 Investigate the categorized troubleshooting sections for clues to the root cause of the
issue.

• To get information about the PCI boards in the target computer, call
SimulinkRealTime.target.getPCIInfo.

• To read the target computer console log, call
SimulinkRealTime.utils.getConsoleLog.

4 If the tests run, but task execution time is slow or the CPU becomes overloaded, see
Real-Time Application Performance in “Troubleshooting in Simulink Real-
Time”.

5 For more information, refer to the following sources:

• MathWorks Tech Support: www.mathworks.com/support/
search_results.html?q=product:"Simulink+Real-Time"

• MATLAB Answers: www.mathworks.com/matlabcentral/answers/?
term=Simulink+Real-Time

13 Troubleshooting Basics

13-2

https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time

• MATLAB Central: www.mathworks.com/matlabcentral

For Speedgoat hardware issues, contact Speedgoat Tech Support:
www.speedgoat.com/support.

6 If these sources do not solve your issue, contact MathWorks Technical Support. See
“Find Simulink Real-Time Support” on page 24-2.

 Troubleshooting Process

13-3

https://www.mathworks.com/matlabcentral
https://www.speedgoat.com/support

Confidence Test Failures

For questions or issues that you have while using the Simulink Real-Time product, see
these guidelines and tips. For specific troubleshooting solutions, refer to the MathWorks
Support website:

www.mathworks.com/support/search_results.html?q=product:"Simulink
+Real-Time".

• “Test 1: Ping Target Computer with System Ping” on page 14-2
• “Test 2: Ping Target Computer with slrtpingtarget” on page 14-4
• “Test 3: Software Restart Target Computer” on page 14-5
• “Test 4: Build and Download slrttestmdl” on page 14-7
• “Test 5: Check Communication with Target Computer” on page 14-9
• “Test 6: Download Prebuilt Real-Time Application” on page 14-10
• “Test 7: Execute Real-Time Application” on page 14-11
• “Test 8: Upload Logged Data and Compare Results” on page 14-12

14

https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

Test 1: Ping Target Computer with System Ping
If you are using a network connection, this test is a standard system ping to your target
computer.

1 At a Windows command prompt, type the IP address of the target computer:

ping xxx.xxx.xxx.xxx

Review the messages.

If the window displays a message similar to this message, system ping succeeds
even though test 1 fails.

Pinging xxx.xxx.xxx.xxx with 32 bytes of data:
Reply from xxx.xxx.xxx.xxx: bytes-32 time<10 ms TTL=59

If the window displays this message, the system ping command failed.

Pinging xxx.xxx.xxx.xxx with 32 byte of data:
Request timed out.

2 Ping succeeds — Ethernet addresses OK?

If ping succeeds, determine whether you entered the required IP and gateway
addresses in Simulink Real-Time Explorer:

a In the MATLAB Command Window, type slrtexplr.
b In the Targets pane, expand the target computer node.
c On the toolbar, click the Target Properties button .
d Select Host-to-Target communication.
e Check that the IP address, Subnet mask, and Gateway text boxes contain

the required values.
f Select Boot configuration.
g Click Create boot disk.
h Restart the target computer with the new kernel.

3 Ping fails — Cables OK?

If ping fails, look for a faulty network cable or, if you are using a coaxial cable, a
missing terminator.

14 Confidence Test Failures

14-2

4 Ping fails — Simulink Real-Time properties OK?

Check that you entered the required properties in Simulink Real-Time Explorer:

a In the MATLAB Command Window, type slrtexplr.
b In the Targets pane, expand the target computer node.
c On the toolbar, click the Target Properties button .
d Select Host-to-Target communication.
e Check that the IP address, Subnet mask, and Gateway text boxes contain

the required values.
f Check that Bus type is set to PCI or USB, depending on the Ethernet adapter

that you are using.
g Select Boot configuration.
h Click Create boot disk.
i Restart the target computer with the new kernel.

5 Ping fails — Ethernet interface operating?

Check that your Ethernet protocol interface is operating. For example, when the
cable is connected to the Ethernet card, make sure that the green “ready” light goes
on.

6 Ping fails — Interference from firewall or antivirus software?

Check that the development computer is not running a firewall or antivirus software
sensitive to the Ethernet port that you are using. For more information, consult your
IT department.

7 Ping fails — Not a locally mounted folder?

Run slrttest from a locally mounted folder, such as Z:\work, rather than from a
UNC network folder, such as \\Server\user\work.

If this procedure does not solve your issue, see Communication Between
Development and Target Computers in “Troubleshooting in Simulink Real-Time”. If
you still cannot solve your issue, see “Find Simulink Real-Time Support” on page 24-2.

 Test 1: Ping Target Computer with System Ping

14-3

Test 2: Ping Target Computer with slrtpingtarget
This test is a Simulink Real-Time ping to your target computer.

1 In the MATLAB Command Window, type:

tg = SimulinkRealTime.target('argument-list')

argument-list is the connection information that indicates which target computer
you are working with. If you do not specify arguments, the software assumes that
you are communicating with the default target computer.

Review the messages in the Command Window.

If the communication link is functioning, you see a message that looks like this
message:

Target: TargetPC1
 Connected = Yes
 Application = loader

2 Not connected — Bad target boot kernel?

If you do not get the preceding message, it is possible that you have a bad target boot
kernel. Recreate the target boot kernel and restart the target computer with the new
kernel. See “Target Computer Boot Methods”.

3 Not connected — Target settings?

Use Simulink Real-Time Explorer to check the target settings. In particular, if test 1
passes but test 2 fails, check the IP address that you entered in the target settings.

If this procedure does not solve your issue, see Communication Between
Development and Target Computers in “Troubleshooting in Simulink Real-Time”. If
you still cannot solve your issue, see “Find Simulink Real-Time Support” on page 24-2.

14 Confidence Test Failures

14-4

Test 3: Software Restart Target Computer
This test is a Simulink Real-Time command that attempts to restart your target
computer. This error is not necessarily fatal because some otherwise functional target
computers do not support software restart.

You must have already configured the target settings with Simulink Real-Time Explorer.
See “PCI Bus Ethernet Setup” or “USB-to-Ethernet Setup”.

Note Do not modify the files installed with the Simulink Real-Time software. If you want
to modify one of these files for your own purposes, copy the file and modify the copy.

1 In the MATLAB Command Window, type:
slrttest('-noreboot')

This command reruns the test without using the reboot command, and then
displays the message:
Test 3, Software reboot the target computer: ... SKIPPED

2 Build Succeeded — Software restart supported?

Review the results of Test 4, Build and download a Simulink Real-Time
application using model slrttestmdl performed without a software restart.
If slrttest builds and loads the real-time application without producing an error
message, it is possible that the target computer does not support the reboot
command. In this case, restart by using a physical reset button.

3 Build Failed — Example model modified?

To determine the cause of failure, in the Diagnostics Viewer and in the Command
Window, review the error messages. You can also open slrttestmdl and build and
download it manually.

If you directly or indirectly modify the slrttestmdl example model supplied with
the product, test 3 is likely to fail. Restore the slrttestmdl example model to its
original state by one of the following methods:

• Recreate the original model by editing it in the following location:
matlabroot\toolbox\rtw\targets\xpc\xpcdemos

 Test 3: Software Restart Target Computer

14-5

• Reinstall the software.

If this procedure does not solve your issue, see Target Computer Boot Process in
“Troubleshooting in Simulink Real-Time”. If you still cannot solve your issue, see “Find
Simulink Real-Time Support” on page 24-2.

14 Confidence Test Failures

14-6

Test 4: Build and Download slrttestmdl
This test attempts to build and download the model slrttestmdl.

1 To determine the cause of failure, in the Diagnostics Viewer and in the Command
Window, review the error messages. You can also open slrttestmdl and build and
download it manually.

2 Build Failed — Compiler not supported?

Using slrtgetCC, check that you are using a supported compiler. Check that you
can compile the blocks in the model with the given compiler and compiler version.

If you did not explicitly specify a compiler by using slrtsetCC, the build procedure
uses the compiler that you specified by using mex -setup. If the MEX compiler is
not a supported Microsoft Visual C++® compiler, the build procedure halts with an
error.

3 Build Failed — Compiler path?

After installation, the Microsoft Visual C++ compiler components must be in the
Microsoft Visual Studio folder. If you do not install the compiler at the required
location, you can get one of the following errors:
Error executing build command: Error using ==> make_rtw
Error using ==> rtw_c (SetupForVisual)
Invalid DEVSTUDIO path specified

or
Error executing build command: Error using ==> make_rtw
Error using ==> rtw_c
Errors encountered while building model "slrttestmdl"

along with this error:
NMAKE: fatal error U1064: MAKEFILE not found and no target
specified
Stop.

Check your compiler setup:

a In the Command Window, type:
slrtsetCC('setup')

 Test 4: Build and Download slrttestmdl

14-7

This function queries the development computer for C compilers that Simulink
Real-Time supports. It returns output like the following:
Select your compiler for Simulink Real-Time.

[1] Microsoft Visual C++ Compilers 2010 Professional in
 C:\Program Files (x86)\Microsoft Visual Studio 10.0
[2] Microsoft Visual C++ Compilers 2013 Team Explorer
 Language Pack in C:\Program Files (x86)\Microsoft Visual Studio 12.0

[0] None

Compiler:

b At the Compiler prompt, enter the number for the compiler that you want to
use. For example, 1.

The function verifies your selection:

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional
Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Are these correct [y]/n?
c Type y or press Enter.

If this procedure does not solve your issue, see Model Compilation, Real-Time
Application Download, and Communication Between Development and Target
Computers in “Troubleshooting in Simulink Real-Time”. If you still cannot solve your
issue, see “Find Simulink Real-Time Support” on page 24-2.

14 Confidence Test Failures

14-8

Test 5: Check Communication with Target Computer
This error occurs only when the target computer settings are out of date.

1 In the MATLAB Command Window, type slrtexplr.
2 In the Targets pane, expand the target computer node.
3 On the toolbar, click the Target Properties button .
4 Select Host-to-Target communication and make the required changes to the

communication properties.
5 Select Boot configuration.
6 Set the required Boot mode.

For information on boot options, see “Target Computer Boot Methods”.
7 Click Create boot disk
8 Restart the target computer.
9 Rerun slrttest.
10 If these steps do not resolve the issue, recreate the target boot kernel using

SimulinkRealTime.createBootImage, restart the target computer, and rerun
slrttest.

If this procedure does not solve your issue, see Communication Between
Development and Target Computers in “Troubleshooting in Simulink Real-Time”. If
you still cannot solve the issue, see “Find Simulink Real-Time Support” on page 24-2.

 Test 5: Check Communication with Target Computer

14-9

Test 6: Download Prebuilt Real-Time Application
This test runs the basic target object constructor, slrt. This error rarely occurs unless
an earlier test has failed.

1 Check that tests 1–5 completed without producing an error message.
2 Configure, build, and download the tutorial model and record whatever error

messages appear (see “Build and Download Real-Time Application”).

If this procedure does not solve your issue, see Real-Time Application Download
and Communication Between Development and Target Computers in
“Troubleshooting in Simulink Real-Time”. If you still cannot solve your issue, see “Find
Simulink Real-Time Support” on page 24-2.

14 Confidence Test Failures

14-10

Test 7: Execute Real-Time Application
This test executes a real-time application (slrttestmdl) on the target computer. If you
change the slrttestmdl model start time to something other than 0, such as 0.001,
this test fails. This change causes the test, and the MATLAB interface, to halt. To
address this failure:

1 Set the slrttestmdl model start time back to 0.
2 Rerun the test.

If this procedure does not solve your issue, see Real-Time Application Execution,
Real-Time Application Performance, Real-Time Application Signals, and
Real-Time Application Parameters in “Troubleshooting in Simulink Real-Time”. If
you still cannot solve your issue, see “Find Simulink Real-Time Support” on page 24-2.

 Test 7: Execute Real-Time Application

14-11

Test 8: Upload Logged Data and Compare Results
This test executes a real-time application (slrttestmdl) on the target computer. If you
change the slrttestmdl model (for example, if you remove the Outport block), this test
can fail.

Note Do not modify the files installed with the Simulink Real-Time software. If you want
to modify one of these files for your own purposes, copy the file and modify the copy.

1 Restore the slrttestmdl example model to its original state by one of the following
methods:

• Recreate the original model by editing it in the following location:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos
• Reinstall the software.

2 If you are running a new Simulink Real-Time release, check that you have updated
the target boot kernel for this release. See “Install Simulink Real-Time Software
Updates” on page 24-3.

If this procedure does not solve your issue, see Real-Time Application Execution,
Real-Time Application Performance, Real-Time Application Signals, and
Real-Time Application Parameters in “Troubleshooting in Simulink Real-Time”. If
you still cannot solve your issue, see “Find Simulink Real-Time Support” on page 24-2.

14 Confidence Test Failures

14-12

Development Computer Configuration

15

Boot Drive Creation Halts
If your development computer MATLAB interface halts while creating a Simulink Real-
Time boot disk or network boot image:

• Use another drive to recreate the Simulink Real-Time boot drive or network boot
image.

• Log in on the development computer as administrator.
• Check that the development computer drive is accessible. If it is not accessible,

replace the drive.

15 Development Computer Configuration

15-2

Target Computer Configuration

• “Faulty BIOS Settings on Target Computer” on page 16-2
• “Hard Drive Not Recognized” on page 16-3
• “File System Disabled on Target Computer” on page 16-4
• “Adjust the Target Computer Stack Size” on page 16-5
• “PCI Board Information” on page 16-6
• “Diagnose an I/O Board” on page 16-8

16

Faulty BIOS Settings on Target Computer

Note If you are using a Speedgoat target machine, contact Speedgoat technical support:
www.speedgoat.com/support.

The BIOS settings of a target computer influence how the target computer works. If you
experience problems when using the Simulink Real-Time software, check the system
BIOS settings of the target computer.

Faulty BIOS settings can cause issues.

• Why is my target not starting?
• Why can SimulinkRealTime.targetgetPCIInfo detect PCI boards, but

autosearch -l cannot?
• Why do my standalone real-time applications run on some target computers, but not

on others?
• Why is my target computer halting when downloading real-time applications?
• Why is my start time slow?
• Why is my real-time application not running in real time?
• Why are my USB ports not working?

The Simulink Real-Time product does not control these settings. See “BIOS Settings”.

16 Target Computer Configuration

16-2

https://www.speedgoat.com/support

Hard Drive Not Recognized

Note If you are using a Speedgoat target machine, contact Speedgoat technical support:
www.speedgoat.com/support.

• Simulink Real-Time recognizes only a target computer hard drive formatted as
FAT-32.

• The hard drive must be an Integrated Device Electronics (IDE) or serial ATA (SATA)
drive.

• When the target computer BIOS is set to AHCI or RAID mode, Simulink Real-Time
does not recognize a SATA hard drive. Change the BIOS to IDE mode.

 Hard Drive Not Recognized

16-3

https://www.speedgoat.com/support

File System Disabled on Target Computer

Note If you are using a Speedgoat target machine, contact Speedgoat technical support:
www.speedgoat.com/support.

If your target computer does not have a FAT hard disk, the monitor on the target
computer displays this error:

ERROR -4: drive not found
No accessible disk found: file system disabled

If you do not want to access the target computer file system, ignore this message. If you
want to access the target computer file system, add a FAT hard disk to the target
computer. Restart the target computer.

See Also
SimulinkRealTime.utils.getConsoleLog

16 Target Computer Configuration

16-4

https://www.speedgoat.com/support

Adjust the Target Computer Stack Size
To discover and adjust the stack size used by the real-time threads on the target
computer:

1 Add the following blocks to your model:

• Current Available Stack Size — Outputs the number of bytes of stack memory
currently available to the real-time application thread.

• Minimum Available Stack Size — Outputs the number of bytes that have not
been used in the stack since the thread was created.

The block traverses the entire stack at every time step to find and report unused
bytes. Use Minimum Available Stack Size only for diagnostic purposes.

2 Execute the real-time application, monitoring the stack size and minimal stack size.
3 Calculate a stack size that allows execution to proceed.

Target computer memory for the real-time application executable, the kernel, and
other uses is limited to a maximum of 4 GB.

4 Adjust the stack size of the real-time threads by using a TLCOptions setting.

For example, to set the stack size for real-time application xpcosc to 4096 kBytes,
in the MATLAB Command Window, type:

set_param('xpcosc','TLCOptions','-axPCModelStackSizeKB=4096')

See Also
“TLC Command-Line Options” | Current Available Stack Size | Minimum Available
Stack Size

 Adjust the Target Computer Stack Size

16-5

PCI Board Information

Note If you are using a Speedgoat I/O module, contact Speedgoat technical support:
www.speedgoat.com/support.

If you want to determine what PCI boards are installed in your Simulink Real-Time
system, in the MATLAB Command Window, type:

tg = slrt;
getPCIInfo(tg, 'all')

List of installed PCI devices:

Intel Unknown
 Bus 0, Slot 0, IRQ 0
 Host Bridge
 VendorID 0x8086, DeviceID 0x1130,
 SubVendorID 0x8086, SubDeviceID 0x4532
.
.
.
Measurement Computing PCI-DIO24
 Bus 1, Slot 11, IRQ 10
 DI DO
 VendorID 0x1307, DeviceID 0x0028,
 SubVendorID 0x1307, SubDeviceID 0x0028
 A/D Chan: 0, D/A Chan: 0, DIO Chan: 24
 Released in: R14SP2 or Earlier
.
.
.

If you want to use multiple boards of a particular type in your system, check that the I/O
driver supports multiple boards. In the documentation for this board type, see the
“Multiple board support” entry.

If the board type supports multiple boards, and you installed these boards in the
Simulink Real-Time system, select a particular board:

1 In the PCI devices display, record the contents of the Bus and Slot columns of the
PCI device in which you are interested.

16 Target Computer Configuration

16-6

https://www.speedgoat.com/support

2 Enter the bus and slot numbers as vectors into the PCI Slot parameter of the PCI
device. For example:

[1 9]

1 is the bus number and 9 is the slot number.

See Also
SimulinkRealTime.target.getPCIInfo

More About
• “PCI Bus I/O Devices”

 See Also

16-7

Diagnose an I/O Board

Note If you are using a Speedgoat I/O module, contact Speedgoat technical support:
www.speedgoat.com/support.

1 Display the input/output behavior of the board by using an external instrument,
such as an oscilloscope or logic analyzer.

2 Check that you have configured the I/O board driver according to the manufacturer
data sheet.

3 Check that you are using the latest version of the I/O board driver and of the
Simulink Real-Time software. See “Install Simulink Real-Time Software Updates”
on page 24-3.

4 When you run the real-time application on a different target computer, check that
the behavior persists.

5 When you install another instance of the I/O board in the target computer, check
that the behavior persists.

6 From the manufacturer website, download the manufacturer I/O driver and
diagnostic software. Install the driver and software on your computer. Use the
manufacturer software to test the I/O board with the manufacturer driver.

7 Report the issue to MathWorks Support at www.mathworks.com/support/
contact_us.

16 Target Computer Configuration

16-8

https://www.speedgoat.com/support
https://www.mathworks.com/support/contact_us/index.html
https://www.mathworks.com/support/contact_us/index.html

Link Between Development and Target
Computers

• “Failed Communication Between Development and Target Computers”
on page 17-2

• “Communications Timeout” on page 17-3
• “Timeout with Multiple Ethernet Cards” on page 17-5

17

Failed Communication Between Development and Target
Computers

To test the communication link between the development and target computers, use
these MATLAB commands from the development computer

• slrtpingtarget — The slrtpingtarget command performs a basic
communication check between the development and target computers. This command
returns success only if the Simulink Real-Time kernel is loaded and running and
the development and target computers are linked. Use this command for a quick
check of the communication between the development and target computers.

• slrttest — The slrttest command performs a series of tests on your Simulink
Real-Time system. These tests range from performing a basic link check to building
and running real-time applications. At the end of each test, the command returns an
OK or failure message. If the test is inappropriate for your setup, the command
returns a SKIPPED message. Use this command for a thorough check of your Simulink
Real-Time installation.

Link errors can also occur in the following instances:

• The target computer is running an old Simulink Real-Time boot kernel that is not
synchronized with the Simulink Real-Time release installed on the development
computer. Recreate the target boot kernel for each new release.

• If you have an active firewall in your system, you can experience communication
errors. To work around this issue, add the MATLAB interface to the firewall
exception list.

• If multiple Ethernet cards or chips are installed in the target computer, see “Timeout
with Multiple Ethernet Cards” on page 17-5.

17 Link Between Development and Target Computers

17-2

Communications Timeout
If the communication link between the development and target computers is broken or
misconfigured, the link times out after about 5 seconds. Before continuing, check that
you have followed the instructions outlined in “System Configuration”.

Diagnose Communication Settings
1 In the MATLAB Command Window, type slrtexplr.
2 In the Targets pane, expand the target computer node.
3 On the toolbar, click the Target Properties button .
4 Select Host-to-Target communication and make the required changes to the

communication properties.
5 Select Boot configuration and click Create boot disk.
6 Restart the target computer and try downloading the real-time application again.
7 Sometimes, the download is complete even though you get a timeout error. To detect

this condition, wait until the target display shows:

System:initializing application finished.
8 In the MATLAB Command Window, type slrtpingtarget.

If slrtpingtarget finds a working connection between the development and target
computers, the response is something like:

ans =

success
9 Right-click the target computer and select Connect.

If the connection resumes, the connection is working. If the connection times out
consistently for a particular model, increase the amount of time allowed before time out.

Increase Communication Timeout

By default, the development computer times out after about 5 seconds if the target
computer does not respond after you establish a connection. You can increase the timeout
value in one of the following ways:

 Communications Timeout

17-3

• At the model level, open the Simulink > Model Configuration Parameters dialog
box and navigate to the Simulink Real-Time Options node. Clear the Use default
communication timeout parameter and enter a new desired timeout value in the
Specify the communication timeout in seconds parameter. For example, to
increase the value to 20 s, enter 20, and then build and download the model.

• At the real-time application level, set the CommunicationTimeOut property to the
timeout value that you want. For example, to increase the value to 20 seconds:

tg = slrt;
tg.CommunicationTimeOut = 20

For both methods, the development computer polls the target computer about once every
second, and if a response is returned, returns the success value. The development
computer waits the full 20 seconds only if a download actually fails.

17 Link Between Development and Target Computers

17-4

Timeout with Multiple Ethernet Cards
The Simulink Real-Time product supports multiple Ethernet cards and chips. If your
target computer has more than one of these cards or chips installed, it is possible to
experience timeout problems. For example, suppose that you are using the network boot
option to start target computer A. When the development computer starts the target
computer, it associates the target computer IP address with the Media Access Control
(MAC) address of Ethernet adapter A. Then, suppose that the target computer BIOS
connects the target computer to Ethernet adapter B. In this case, the Simulink Real-
Time software cannot connect the development and target computers because they are
connected to different Ethernet controllers.

Try to disable or remove the Ethernet controller that you do not intend to use. For
example, if you have an on-board Ethernet controller and a separate Ethernet card,
disable the on-board Ethernet controller through the target computer BIOS. If you must
have multiple Ethernet adapters of the same type, use one of the following procedures to
determine which Ethernet adapter the software found.

Network Boot

If you are using the network boot option to start the target computer, do the following:

1 Connect the network cable to Ethernet adapter B.
2 In the Command Window, type:

!arp -d

This command removes the association between the target computer address and the
network address of Ethernet adapter A from the cache of the development computer.
You can now make a new connection (and association).

3 Change the Ethernet adapter card that the network boot option uses in one of the
following ways:

• Change the target computer BIOS to change the Ethernet adapter to the adapter
that the network boot option is searching for.

• Follow the procedure in “Ethernet Card Selection by Index” on page 3-15.

 Timeout with Multiple Ethernet Cards

17-5

Non-Network Boot

If you are not using the network boot option to start the target computer, do the
following:

1 Switch the network cable to the other Ethernet port and restart the target computer.
Try to communicate with the target computer from the development computer.

2 If you can communicate using this Ethernet port, use this port to connect the
development computer to the target computer.

17 Link Between Development and Target Computers

17-6

Target Computer Boot Process

• “Target Computer Does Not Boot” on page 18-2
• “Target Medium Is Not Bootable” on page 18-4
• “Target Computer Halts” on page 18-5
• “Target Computer Spontaneously Restarts” on page 18-6

18

Target Computer Does Not Boot

Note If you are using a Speedgoat target machine, contact Speedgoat technical support:
www.speedgoat.com/support.

If you cannot start your target computer with the Simulink Real-Time boot media or
network boot image:

1 Recreate the target boot kernel by using new media.
2 Call SimulinkRealTime.getTargetSettings. Check that the Simulink Real-

Time kernel properties correspond with the target settings displayed in the Simulink
Real-Time Explorer.

To display the current values of Simulink Real-Time target settings for the default
target computer, type SimulinkRealTime.getTargetSettings without
arguments. To display their allowed values, type:

tgs = SimulinkRealTime.getTargetSettings;
tgs.set

3 If the target computer does not start and shows only a blank screen, to display
messages that the kernel prints during startup, type:

tgs = SimulinkRealTime.getTargetSettings;
tgs.TargetScope = 'Disabled'

Restart the target computer and check the console log for error messages. To read
the target computer console log, type:

console_log = SimulinkRealTime.utils.getConsoleLog;

When you have corrected the errors, set tgs.TargetScope = 'Enabled', and
then restart the target computer.

4 By default, tgs.LegacyMultiCoreConfig = 'on'. If
tgs.LegacyMultiCoreConfig is 'off', the Simulink Real-Time kernel cannot
discover system resources that are not compliant with the Advanced Configuration
and Power Interface (ACPI) standard. To allow the kernel to discover such devices by
using the legacy MPFPS in the target computer BIOS, set
tgs.LegacyMultiCoreConfig = 'on', and then restart the target computer.

18 Target Computer Boot Process

18-2

https://www.speedgoat.com/support

5 If you are doing a network boot and the procedure displays a message similar to
TFTP Timeout:

a Check that the xpctftpserver program is running. If it is not, recreate the
network boot image.

b Temporarily disable the internet security (firewall) software on the development
computer. Test if you can start the target computer. If you can, ask your IT
manager to configure the internet security software to allow the start procedure
to work in its presence.

If this procedure does not solve your issue, see “Target Medium Is Not Bootable” on page
18-4. If you still cannot solve your issue, see “Find Simulink Real-Time Support” on
page 24-2.

See Also
SimulinkRealTime.getTargetSettings |
SimulinkRealTime.utils.getConsoleLog | Target Settings

 See Also

18-3

Target Medium Is Not Bootable

Note If you are using a Speedgoat target machine, contact Speedgoat technical support:
www.speedgoat.com/support.

When starting the target computer, you can get a message similar to the following:

Not a bootable medium or NTLDR is missing

1 Configure your boot media by using the procedure in “Create a Bootable Partition”.
2 Recreate the target boot kernel with the new media. Restart the target computer

using the new kernel.

See Also
SimulinkRealTime.utils.getConsoleLog

18 Target Computer Boot Process

18-4

https://www.speedgoat.com/support

Target Computer Halts
If your target computer displays a System Halted message while starting:

1 In your target computer, install an Ethernet card compatible with Simulink Real-
Time.

2 In the Host-to-Target communication pane of Simulink Real-Time Explorer,
check that you configured the Target driver parameter to match the hardware
installed in your target computer.

See Also
SimulinkRealTime.utils.getConsoleLog

 Target Computer Halts

18-5

Target Computer Spontaneously Restarts
If your target computer spontaneously restarts, check that your target computer is an
Intel Core™ computer, or a model that supports the SSE2 instruction set. If your target
computer does not support the SSE2 instruction set, acquire a target computer that
meets that requirement.

18 Target Computer Boot Process

18-6

Model Compilation

• “Microsoft Visual Studio 2015 C/C++ Compiler Not Installed” on page 19-2
• “Compiler Errors from Models Linked to DLLs” on page 19-3

19

Microsoft Visual Studio 2015 C/C++ Compiler Not Installed
By default, the Microsoft Visual Studio 2015 installer does not install the C++ compiler
that Simulink Real-Time requires. To install the C++ compiler, perform a custom install
and select the C++ compiler. If you already installed Microsoft Visual Studio with the
default configuration, rerun the installer and select the modify option.

19 Model Compilation

19-2

Compiler Errors from Models Linked to DLLs
When building real-time applications, the Simulink Real-Time software supports links to
static link libraries (.lib) only, not links to dynamic link libraries (.dll), such as Windows
libraries. When you build your models, check that you link only to static link libraries.
When you compile with Simulink Real-Time S-functions, linking to static libraries is not
an issue.

 Compiler Errors from Models Linked to DLLs

19-3

Real-Time Application Download

20

Polling Mode Not Supported on Single-Core Target Computers
You see the following message on the target computer screen when you download a real-
time application that is configured to run in polling mode:

Single-core kernel configuration found. To run a model in polling mode,
use a multicore target computer and set 'Multicore CPU' in Simulink
Real-Time Explorer.

You are attempting to enable polling mode when your system does not meet the
requirements for polling mode. See “Execution Modes” on page 5-2.

See Also
SimulinkRealTime.utils.getConsoleLog

20 Real-Time Application Download

20-2

Real-Time Application Execution

• “Error from Crash Info Function” on page 21-2
• “Sample Time Deviates from Expected Value” on page 21-4
• “Cannot Change Sample Time at Run Time” on page 21-6
• “Change of Stop Time” on page 21-7

21

Error from Crash Info Function
Some target computers contain hardware that can retain information in memory from
before a software restart. If these computers also contain a hard drive, they can save
crash data after a fatal error.

Caution After a fatal error, do not restart the computer manually by using the boot or
power switch. A manual restart prevents the computer from saving the crash data.

Twenty seconds after a fatal error, the target computer restarts itself and saves the crash
data on the target computer hard drive. When the computer is running again, you can
call the SimulinkRealTime.crashInfo function from the development computer to
retrieve the crash data.

When you call this function, you can see the error:

Error: -9:file not found

on the target computer screen and the error:

Could not open target file c:\SLRTCRB.bin

in the Command Window. If you see one of these messages, look for the following causes:

• You restarted the target computer manually by using the boot or power switch
instead of waiting for it to restart itself.

• The target computer restarted with a different kernel from the one that it was
running when it experienced the fatal error. For example, suppose that you install
DOS Loader on the target computer. If you start the computer with a USB drive that
you remove afterward, and the computer has a fatal error, the restart uses DOS
Loader.

• The target computer does not retain information in memory from before a software
restart. If the target restarts itself after a fatal error but does not print a message
referring to SimulinkRealTime.crashInfo, it does not retain information in
memory.

• The target computer does not have a functioning hard drive.
• The target computer wrote data into a crash file, but the file was unreadable.

21 Real-Time Application Execution

21-2

See Also
Crash Info | SimulinkRealTime.utils.getConsoleLog

 See Also

21-3

Sample Time Deviates from Expected Value
Sometimes the sample time that you measure from your model is not equal to the sample
time that you requested. This difference depends on your target computer. Your model
sample time is as close to your requested time as the target computer CPU allows.

Digital processing does not allow infinite precision in setting the spacing between the
timer interrupts. This limitation can cause the divergent sample times.

For the supported target computers, the only timer that can generate interrupts is based
on a 1.193-MHz clock. For the Simulink Real-Time system, the timer is set to a fixed
number of ticks of this frequency between interrupts. If you request a sample time of
1/10000 seconds, or 100 microseconds, you do not get exactly 100 ticks. Instead, the
Simulink Real-Time software calculates that number as:

100 x 10-6 s X 1.193 x 106 ticks/s = 119.3 ticks

The Simulink Real-Time software rounds this number to the nearest whole number, 119
ticks. The actual sample time is then:

119 ticks/(1.193 X 106 ticks/s) = 99.75 X 10-6 s
(99.75 microseconds)

Compared to the requested original sample time of 100 microseconds, this value is 0.25%
faster.

As an example of how you can use this value to derive the expected deviation for your
target computer, assume the following:

• Output board that generates a 50 Hz sine wave (expected signal)
• Sample time of 1/10000
• Measured signal of 50.145 Hz

The difference between the expected and measured signals is 0.145 Hz, which deviates
from the expected signal value by 0.29% (0.145 / 50). Compared to the previously
calculated value of 0.25%, there is a difference of 0.04% from the expected value.

If you want to refine the measured deviation for your target computer, assume the
following:

• Output board that generates a 50 Hz sine wave (expected signal)

21 Real-Time Application Execution

21-4

• Sample time of 1/10200
• Measured signal of 50.002 Hz:

1/10200 s X 1.193 x 106 ticks/s = 116.96 ticks

Round this number to the nearest whole number of 117 ticks. The resulting frequency is
then:

(116.96 ticks/117)(50) = 49.983 Hz

The difference between the expected and measured signal is 0.019, which deviates from
the expected signal value by 0.038% (0.019 / 50.002). When the sample time is
1/10000, the deviation is 0.04%.

Some amount of error is common for most computers. The margin of error varies from
machine to machine.

Most high-level operating systems, like Microsoft Windows or Linux®, occasionally insert
extra long intervals to compensate for errors in the timer. The Simulink Real-Time
software does not attempt to compensate for timer errors. For this product, close
repeatability is more important for most models than exact timing. However, sometimes
chips have inherent designs that produce residual jitters that can potentially change
your system behavior. For example, some Intel Pentium chips produce residual jitters on
the order of 0.5 microseconds from interrupt to interrupt.

 Sample Time Deviates from Expected Value

21-5

Cannot Change Sample Time at Run Time
Some blocks produce incorrect results when you change their sample time at run time. If
you include such blocks in your model, the software displays a warning message during
model build. To avoid incorrect results, change the sample time in the original model,
and then rebuild and download the model.

21 Real-Time Application Execution

21-6

Change of Stop Time
If you change the step size of a real-time application at run time, the real-time
application sometimes executes for fewer steps than you expect. The number of execution
steps is:

floor(stop time/step size)

When you compile code for a model, Simulink Coder calculates the number of steps based
on the current step size and stop time. If the stop time is not an integral multiple of the
step size, Simulink Coder adjusts the stop time to an integral multiple. If you change the
step size without rebuilding the model, Simulink Real-Time uses the new step size and
the previously adjusted stop time. The resulting model sometimes executes for fewer
steps than you expect.

Suppose that a model has a stop time of 2.4 and a step size of 1. At compilation time,
Simulink Coder adjusts the stop time of the model to 2. If you change the step size to 0.6
at run time but do not recompile the application, the expected number of steps is 4. The
actual number of steps is 3 because Simulink Real-Time uses the previously adjusted
stop time of 2.

To avoid this issue, check that the original stop time (as specified in the model) is an
integral multiple of the original step size.

 Change of Stop Time

21-7

Real-Time Application Signals

• “Fix Invalid File IDs” on page 22-2
• “Cannot View Mux Output” on page 22-3

22

Fix Invalid File IDs
If you are acquiring signal data with a file scope, you can get Error -10: Invalid
File ID on the target computer. This error occurs because the size of the signal data file
exceeds the available space on the disk. The signal data is most likely corrupt and
irretrievable. Delete the signal data file and restart the Simulink Real-Time system.

To prevent this occurrence, monitor the size of the signal data file as the scope acquires
data.

For additional information, refer to the MathWorks Support website:

www.mathworks.com/support/search_results.html?q=product:"Simulink
+Real-Time".

See Also
Gain

External Websites
• www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-

Time"

22 Real-Time Application Signals

22-2

https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"

Cannot View Mux Output
When you connect a real-time Scope block to the output of a Mux block, sometimes you
cannot view the output from the Mux block. This issue occurs because the Mux block
produces a virtual signal, which the code optimizer removes when it generates the real-
time executable.

To address this issue, insert a Gain block with the Gain parameter set to 1.0 at the
input to the Scope block.

See Also
Gain

More About
• “Virtual Signals” (Simulink)

 Cannot View Mux Output

22-3

Real-Time Application Performance

• “Improve Run-Time Performance” on page 23-2
• “Real-Time Application Execution Produces CPU Overloads” on page 23-5
• “Allow CPU Overloads” on page 23-7
• “Task Execution Time Definition” on page 23-8
• “Failure to Read Profiling Data” on page 23-9
• “Timeout While Accessing File System” on page 23-10

23

Improve Run-Time Performance
You can improve run-time performance and reduce the task execution time (TET) of a
model by using the following procedures.

Run Performance Tools

Use the following performance tools:

• Run Performance Advisor from the Simulink Analysis > Performance Tools menu
and follow its guidance. See:

• “Improve Performance of Multirate Model” on page 8-2
• “Sample Time and Throughput in Real-Time Applications” on page 8-28

• Configure a real-time application for profiling, run it, and call profile_slrt to
retrieve the results. Evaluate the results for potential improvements in the task and
core distribution of the model. See “Execution Profiling for Real-Time Applications” on
page 8-19.

Use Multicore Target Computer

If you are using a single-core target computer, improve performance by configuring your
model to run on a multicore target computer:

1 Acquire a multicore target machine (see www.speedgoat.com/products).
2 Partition the model into subsystems according to the physical requirements of the

system that you are modeling. Set the block sample rates within each subsystem to
the slowest rate that meets the physical requirements of the system.

3 In the Configuration Parameters dialog box, on the Solver pane, select the check
box for Treat each discrete rate as a separate task.

4 Select the Allow tasks to execute concurrently on target check box.
5 Click Configure Tasks, and then select the Enable explicit model partitioning

for concurrent behavior check box.
6 Create tasks and triggers, and then explicitly assign subsystem partitions to the

tasks (see “Partition Your Model Using Explicit Partitioning” (Simulink)).
7 In Simulink Real-Time Explorer, on the Target settings pane, check that you

selected the Multicore CPU check box.

23 Real-Time Application Performance

23-2

https://www.speedgoat.com/products

8 Run the real-time application on the multicore target machine.

Minimize Model
1 If the model contains many states (for example, more than 20 states), clear the

States check box in the Configuration Parameters dialog box, on the Data Import/
Export pane. You have now disabled state logging, making more memory available
for the real-time application.

2 On the Data Import/Export pane, clear the Time, States, Output, Final states,
and Signal logging parameters. You have now turned off data logging, making
more CPU cycles available for calculating the model.

3 On the Simulink Real-Time Options pane, clear the Monitor Task Execution
Time check box. You have now disabled TET logging for the real-time application.

4 On the Solver pane, increase Fixed-step size (fundamental sample time).
Executing with a short sample time can overload the CPU.

5 Use polling mode (see “Polling Mode” on page 5-3).
6 In Simulink Real-Time Explorer, on the Target settings pane, clear the Graphics

mode check box to disable the target scope display.
7 Remove scopes from the model.
8 Eliminate or minimize target computer disk I/O in your model.
9 Reduce the number of I/O channels in the model.

Contact Technical Support
For additional guidance, refer to the following sources:

• MathWorks Tech Support: www.mathworks.com/support/
search_results.html?q=product:"Simulink+Real-Time"

• MATLAB Answers: www.mathworks.com/matlabcentral/answers/?
term=Simulink+Real-Time

• MATLAB Central: www.mathworks.com/matlabcentral

For Speedgoat hardware issues, contact Speedgoat Tech Support: www.speedgoat.com/
support.

If these sources do not solve your issue, contact MathWorks Technical Support. See “Find
Simulink Real-Time Support” on page 24-2.

 Improve Run-Time Performance

23-3

https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral
https://www.speedgoat.com/support
https://www.speedgoat.com/support

See Also

More About
• “Sample Time and Throughput in Real-Time Applications” on page 8-28
• “Improve Performance of Multirate Model” on page 8-2
• “Sample Time and Throughput in Real-Time Applications” on page 8-28
• “Execution Profiling for Real-Time Applications” on page 8-19
• “Partition Your Model Using Explicit Partitioning” (Simulink)
• “Polling Mode” on page 5-3
• “Find Simulink Real-Time Support” on page 24-2
• “Multicore Programming with Simulink” (Simulink)

External Websites
• www.speedgoat.com/products

23 Real-Time Application Performance

23-4

https://www.speedgoat.com/products

Real-Time Application Execution Produces CPU Overloads
A CPU overload indicates that the CPU is unable to complete processing a model time
step before restarting for the next time step. When this error occurs, the target object
property CPUoverload changes from none to detected. One of the following can
happen:

• The Simulink Real-Time kernel halts model execution.
• If you allow the overload, model execution continues until a predefined event occurs

(see “Allow CPU Overloads” on page 23-7). If the model continues to run after a
CPU overload, the time step lasts as long as the time required to finish the execution.
This behavior delays the next time step.

For more information and test models, see www.mathworks.com/matlabcentral/
fileexchange/23507.

Your real-time application can experience real and spurious CPU overloads.

Real CPU Overloads

Model design or target computer resources cause real CPU overloads. Possible reasons
are:

• The target computer is too slow or the model sample time is too small (see “Limits on
Sample Time” on page 8-13).

• The model is too complex (algorithmic complexity).
• The model does disk I/O on the target computer hard drive.
• I/O latency, where each I/O channel used introduces latency into the system. I/O

latency can cause the execution time to exceed the model time step.

To find latency values for a board supported by the Simulink Real-Time block library,
consult the vendor data sheet. To find a link to the vendor website, see:

www.mathworks.com/products/simulink-real-time/supported/hardware-
drivers.html.

To find latency values for Speedgoat boards, contact Speedgoat technical support.

 Real-Time Application Execution Produces CPU Overloads

23-5

https://www.mathworks.com/matlabcentral/fileexchange/23507
https://www.mathworks.com/matlabcentral/fileexchange/23507
https://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html
https://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html

For example, your real-time application includes the National Instruments®
PCI-6713 board, which the Simulink Real-Time block library supports. Assuming that
you want to use four outputs:

1 From the vendor data sheet, the D/A latency is 1 + 2.4 × N.
2 To get the latency for four outputs, calculate the latency:

1 + (2.4 × 4) = 10.6 microseconds
3 Include this value in your sample time calculations.

Spurious CPU Overloads

Properties in the BIOS commonly cause spurious CPU overloads. Such properties
include:

• Advanced Power Management
• Plug-and-Play (PnP) operating system
• System Management Interrupts (SMIs)

Enabling these properties can cause non-real-time behavior from the target computer. To
run the application as a real-time application, disable these BIOS properties for the
target computer. See “BIOS Settings”.

For some BIOS configurations, you cannot disable SMIs. However, for some chip sets,
you can programmatically prevent or disable SMIs. For a solution to disabling SMIs in
the Intel ICH5 family, see www.mathworks.com/matlabcentral/fileexchange/
loadFile.do?objectId=18832&objectType=file".

23 Real-Time Application Performance

23-6

https://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18832&objectType=file
https://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18832&objectType=file

Allow CPU Overloads
The Simulink Real-Time kernel usually halts model execution when it encounters a CPU
overload. You can configure the Simulink Real-Time model to allow CPU overloads. Use
this capability to support long initializations and for overload diagnosis.

Long Initializations

For some real-time applications, normal initialization can extend beyond the first sample
time. For such an application, use the TLCOptions property xPCStartupFlag with the
smallest effective value, up to approximately 5.

Overload Diagnosis

During execution, hardware-specific factors can cause the real-time application to
process data beyond the sample time. Use the TLCOptions properties
xPCMaxOverloads and xPCMaxOverloadLen to diagnose and address this issue.

Note Allowing the target computer CPU to overload can cause incorrect results,
especially for multirate models. Use these TLC command-line options only for diagnosis.
When your diagnosis is complete, turn off these options.

See Also
SimulinkRealTime.utils.getConsoleLog

More About
• “CPU Overload Options” on page 8-14
• “TLC Command-Line Options”

 Allow CPU Overloads

23-7

Task Execution Time Definition
Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step. For a multirate model, use the profiler to find out what the execution time is
for each rate.

23 Real-Time Application Performance

23-8

Failure to Read Profiling Data
Calling SimulinkRealTime.target.getProfileData produces an error. The error
can state that the file does not exist in the expected location, or that attempting to read
the file causes an error.

To address this issue, try the following procedure:

1 Check that you have set the profiling options in Code Generation > Verification.
2 Build and download the real-time application.
3 Enter these commands in the Command Window:

tg = slrt;
startProfiler(tg);
start(tg);
pause(1);
stop(tg);
profiler_data = getProfilerData(tg)

See Also

Related Examples
• “Execution Profiling for Real-Time Applications” on page 8-19
• “Timeout While Accessing File System” on page 23-10

 Failure to Read Profiling Data

23-9

Timeout While Accessing File System
While you are accessing the target computer file system to read or write a large data or
log file, the connection between the development and target computer systems times out.

To address this problem, consider replacing the hard drive on your target computer with
a faster one. As a workaround, you can also increase the communication timeout value.

See Also

Related Examples
• “Increase Communication Timeout” on page 17-3
• “Failure to Read Profiling Data” on page 23-9

23 Real-Time Application Performance

23-10

Simulink Real-Time Support

• “Find Simulink Real-Time Support” on page 24-2
• “Install Simulink Real-Time Software Updates” on page 24-3

24

Find Simulink Real-Time Support
For support with Speedgoat target machines or I/O modules, contact Speedgoat support:

www.speedgoat.com/support.

For support on general MATLAB or Simulink issues, see MathWorks Support:

www.mathworks.com/support.

For support on Simulink Real-Time issues, see:

• Simulink Real-Time Support:

www.mathworks.com/support/search_results.html?q=product:"Simulink
+Real-Time"

• Simulink Real-Time Answers:

www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time

www.mathworks.com/matlabcentral/answers/?term=xPC+Target
• Simulink Real-Time Central File Exchange:

www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-
Time

www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target

After searching these resources, if you still cannot solve your issue:

1 Call function SimulinkRealTime.getSupportInfo to retrieve diagnostic
information for your Simulink Real-Time configuration.

SimulinkRealTime.getSupportInfo can record information that is sensitive to
your organization. Review this information before disclosing it to MathWorks.

2 For online or phone support, contact the Simulink Real-Time Technical Team
directly:

www.mathworks.com/products/simulink-real-time/expert-contact.html.

24 Simulink Real-Time Support

24-2

https://www.speedgoat.com/support
https://www.mathworks.com/support
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/support/search_results.html?q=product:"Simulink+Real-Time"
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/answers/?term=xPC+Target
https://www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target
https://www.mathworks.com/products/simulink-real-time/expert-contact.html

Install Simulink Real-Time Software Updates
The general procedure for updating Simulink Real-Time is:

1 Navigate to the MathWorks download page:

www.mathworks.com/downloads.
2 Navigate to the page for the Simulink Real-Time software version that you want.

Download it to your development computer.
3 Install and integrate the new release software.

After updating Simulink Real-Time, to recreate your Simulink Real-Time target settings:

1 In the MATLAB Command Window, type slrtexplr.
2 On the Targets pane, expand the target computer node.
3 On the toolbar, click the Target Properties button .
4 Select Host-to-Target communication and select the required communication

method between your development and target computers (“PCI Bus Ethernet Setup”
or “USB-to-Ethernet Setup”).

5 Select Boot configuration and click Create boot disk.
6 Restart the target computer.
7 For each model that you want to execute, in Simulink Editor, from the Code menu,

click C/C++ Code > Build Model.

 Install Simulink Real-Time Software Updates

24-3

https://www.mathworks.com/downloads/

